Interfacing User Logic with the Microcontroller Subsystem

Introduction

This tutorial shows you how to interface and handle communication between user logic in the field programmable gate array (FPGA) fabric and the SmartFusion®2 microcontroller subsystem (MSS). It also explains the Microsemi Libero® System-on-Chip (SoC) design software tool flow for designing applications for the SmartFusion2 system-on-chip (SoC) FPGA family of devices.

A SmartFusion2 SoC FPGA device has two fabric interface controllers (FIC_0 and FIC_1) as a part of the MSS. These FIC blocks provide a means of interfacing from the SmartFusion2 SoC FPGA MSS AHB-Lite (AHBL) bus to user masters or user slaves in the FPGA fabric. Each FIC block performs an AHBL to AHBL or AHBL to APB3 bridging function between the AHBL bus and the APB3 bus in the FPGA fabric. Each FIC block provides two bus interfaces between the MSS and FPGA fabric. The first one is mastered by the MSS and has slaves in the FPGA fabric; the second one has a master in the fabric and slaves in the MSS. The bus interfaces to the FPGA fabric can be either 32-bit AHBL or 32-bit APB type. Each FIC block provides registered bridging between the MSS AHBL interface and the FPGA fabric AHBL/APB circuitry to run at frequency ratios of 1:1, 2:1, 4:1, 8:1, 16:1, or 32:1. In AHB-Lite configuration, a bypass mode is provided, in which signals to and from the fabric are not registered and hence requires fewer clock cycles to complete each transaction. SmartFusion2 SoC FPGA FIC has six memory regions. You can allocate a memory region to a particular FIC that is either to FIC_0 or FIC_1. Each memory region has a predefined memory map. Refer to the Fabric Interface Controller chapter of the SmartFusion2 ARM Cortex-M3 and Microcontroller Subsystem User's Guide for more information on FIC blocks.

After completing this tutorial you will be familiar with the following:

1. Creating a project for a SmartFusion2 SoC FPGA using the Microsemi Libero SoC toolset
2. Using SmartFusion2 SoC FPGA MSS configurator to configure MSS blocks
3. Configuring MSS clock conditioning circuitry (MSS_CCC) for generating clocks to the MSS blocks
4. Configuring fabric interface controllers (FIC_0 and FIC_1) to interface user logic in the fabric with the MSS
5. Using on-chip oscillators and fabric CCC (FAB_CCC) for generating system clocks
6. Writing a simple bus functional model (BFM) script for simulating the design
7. Verifying the design by running BFM commands

Tutorial Requirements

This tutorial requires the following software installed on your computer:

- Microsemi Libero SoC 11.0.

Project Files

The project files associated with this tutorial can be downloaded on Microsemi website: www.microsemi.com/soc/download/rsc/?f=SmartFusion2_FIC_Tutorial_DF. The project files include the following:

- Source
- Solution
- A readme file

Refer to the provided readme file for more details on the project files and complete directory structure.
Design Description

The design uses the SmartFusion2 SoC FPGA MSS block, one CCC block, on-chip 25/50 MHz RC oscillator and two different slaves in the FPGA fabric. The MSS is configured with FIC_0 and FIC_1 enabled, FIC_0 is configured for the AHBL master interface and FIC_1 is configured for the APB3 master interface. Choosing this configuration allows the application to access two different types of FPGA fabric peripheral slaves from two different masters in the MSS. The slaves in the FPGA fabric are CoreAHBLSRAM and CoreGPIO. CoreAHBLSRAM is connected to FIC_0 through an AHBL bus interface and CoreGPIO is connected to FIC_1 through an APB3 bus interface. Figure 1 shows the block diagram of the design. The ARM® Cortex-M3 processor or any other MSS master can access these slaves via the FIC blocks. In this design, using BFM models, you will verify the bus read and writes to the fabric peripherals from the MSS side. Using a BFM script, you will perform reads and writes to the CoreAHBLSRAM memory, configure the CoreGPIO block, and set GPIO outputs.

![Block Diagram of the Design](image)

Figure 1. Block Diagram of the Design

Design Steps

The major steps to execute this tutorial are as follows:

- Creating a new Libero SoC project for SmartFusion2 SoC FPGA
- Using SmartFusion2 SoC FPGA MSS Configurator to configure the FIC blocks, MSS_CCC, and reset controller
- Creating the complete design using the SmartDesign tool
- Writing user BFM script to simulate the design
- Simulating the design using ModelSim simulator
Step 1: Creating a New Libero SoC Project

1. Open Libero SoC design software (Start > Programs > Microsemi Libero SoC 11.0 > Libero SoC 11.0) or click the Libero SoC shortcut available on your desktop. The version number of the Libero SoC design software depends on the version that is installed on your PC. You can use either v11.0 or latest.

2. Select New Project from the Project menu. Enter the information shown below in the New Project wizard dialog box.

 - Project Name: SmartFusion2_FIC_Demo
 - Location: C:/Microsemi_prj
 - Preferred HDL type: Verilog
 - Family: SmartFusion2
 - Die: M2S050T
 - Package: 896 FBGA
 - Speed: -1
 - Die Voltage: 1.2
 - Operating Conditions: COM
 - Design Templates and Creators: Select Use Design Tool and select SmartFusion2 Microcontroller Subsystem (MSS) under core section.

 Note: This tutorial uses Verilog as the preferred HDL type. You can select VHDL as the preferred HDL type and continue with the tutorial.
 This tutorial uses MSS version 1.0.100. It is recommended to use the latest version of the MSS for your designs.
3. Click **OK** when finished.

Note: If prompted to download the MSS core, click "Yes" to download the MSS core to your vault.

A new project with a top-level SmartDesign component named as the project name (SmartFusion2_FIC_Demo) will be created. This SmartDesign component includes the MSS component as an instantiation. Figure 3 shows the Libero SoC project window with the MSS component as an instantiation in the top-level SmartDesign component.
Step 1: Creating a New Libero SoC Project

The SmartDesign provides a graphical block-level platform for creating simple and complex designs, including processor-based and bus-based System-On-Chip (SoC) designs. SmartDesign provides a powerful common visual block-level platform for instantiation and connection of Microsemi IP Cores, common cores, DSP modules, IP, and custom HDL functions and glue logic, or third-party-generated cores and solutions. The final result is a design-rule-checked and automatically abstracted synthesis-ready HDL file. A design using SmartDesign can be the entire FPGA design or a component subsystem of a larger design.

4. Click Download them now!, if new cores are available for download. These cores will be downloaded to your vault.
Figure 4. Downloading New Cores to Vault

<table>
<thead>
<tr>
<th>Design Flow</th>
<th>Catalog</th>
</tr>
</thead>
</table>

No core selected.
Step 2: Configuring MSS Functional Blocks

The default configuration of the MSS enables all the peripherals. You can disable the unused peripherals or configure the MSS blocks by double-clicking the MSS component. Double-clicking the MSS component opens the MSS configurator canvas as a new tab in the project window. Figure 5 shows the MSS configurator window.

Figure 5. SmartFusion2 SoC FPGA MSS Configurator
1. Maximize the MSS configurator window by clicking the **Maximize Work Area** icon available on the toolbar.

![Maximizing Work Area](image)

Figure 6. Maximizing Work Area

2. Click **Zoom To Fit** option available on the left side of the work area to zoom the MSS configurator window. The resultant MSS configurator window is shown in **Figure 7**.

![MSS Configurator Window](image)

Figure 7. MSS Configurator Window

3. Disable the unused MSS peripherals by deselecting them, as shown in **Figure 8**. For this tutorial, you will be using FIC_0 and FIC_1. Disable the rest of the MSS peripherals.
Step 2: Configuring MSS Functional Blocks

4. The resultant MSS configurator window after disabling the unused MSS peripherals is shown in Figure 9.

5. Configure the FIC_0 block for an AHBL master interface by double-clicking it. A FIC_0 configurator window is displayed. In the FIC_0 configurator, make the following settings and keep the others at the default settings:
 - Interface Type: AHBLite
 - Use Master Interface: Enable
 - FPGA Fabric Address Regions (MSS Master View): Allocate Fabric Region 0, 1, and 2 to FIC_0 and Fabric Region 3, 4, and 5 to FIC_1. This is the default setting.

 This configuration allows the MSS Masters to access the fabric slaves at fabric regions 0, 1, and 2 through FIC_0, and fabric regions 3, 4, and 5 via FIC_1.
Note: You can also reconfigure the MSS sub-blocks by clicking at configuration symbol, as shown in Figure 10.

Figure 11 shows the FIC_0 Configurator with the required configuration settings.

6. Click **OK** after completing the FIC_0 configuration.

7. Double-click the FIC_1 block in the MSS configurator window to configure it for an APB3 master interface. A FIC_1 configurator window pops up. In the FIC_1 configurator, make the following settings and keep the others at the default settings:
 - Interface Type: APB3
 - Use Master Interface: Enable

Figure 12 shows the FIC_1 Configurator with the required configuration settings.
Step 2: Configuring MSS Functional Blocks

8. Click **OK** after completing the FIC_1 configuration.

9. Configure the clocks for the MSS blocks by double-clicking the MSS_CCC block in the MSS configurator. A MSS_CCC configurator window pops up. In the MSS_CCC configurator window, make the following settings and keep others as default settings:
 - Enable the option **Monitor FPGA Fabric PLL Lock (CLK_BASE_PLL_LOCK)**
 - Set the **FIC_0_CLK** divider to **2**
 - Set the **FIC_1_CLK** divider to **2**

By default MSS operating frequency is set to 100 MHz.

Note: Each FPGA fabric FIC sub-system must be driven by a clock whose clock frequency matches the frequency defined, for that particular sub-system, in the MSS_CCC configurator.

The **CLK_BASE** frequency is non-editable and is set by the configurator to the minimum frequency of all FIC clock frequencies.

Figure 13 shows the MSS_CCC configuration window with the required settings.
10. Click **OK** after completing the MSS_CCC configuration.

11. Configure the RESET Controller by double-clicking the RESET Controller block in the MSS configurator. A reset controller configurator window pops up. In the reset controller configurator window, make the following settings and keep others at default settings:
 - Enable FPGA Fabric to MSS Reset (MSS_RESET_N_F2M): Enable
 - Enable MSS to FPGA Fabric Reset (MSS_RESET_N_M2F): Enable
 Figure 14 shows the reset configuration window with the required settings.

12. Click **OK** after completing the reset configuration.

13. Save the MSS configuration by using **File > Save SmartFusion2_FIC_Demo_MSS** or using a shortcut on the toolbar. This step completes the MSS configuration and the resultant MSS configurator window is shown in Figure 15.
Step 3: Creating Design using SmartDesign

This step demonstrates how to add components from Catalog to the design and interconnecting them as per the design requirements.

A top-level SmartDesign component for your design is already created by the tool. You can add more components to it to build the complete design.

1. Select the top-level SmartDesign component tab (SmartFusion2_FIC_Demo) in the workspace.
2. The MSS component needs to be updated to the latest configuration as configured in Step II – Configuring MSS Functional Blocks. As shown in Figure 16, a warning symbol on the MSS component indicates that configuration of the component has changed and needs an update.
Interfacing User Logic with the Microcontroller Subsystem

3. Update the MSS component by right-clicking on it and selecting **Update Instance(s) with Latest Component**.

4. The resultant MSS component is shown in **Figure 18**. Notice that peripheral I/Os are not present because you disabled them.
Step 3: Creating Design using SmartDesign

5. Restore the work area by clicking the restore button on toolbar.

6. Select the **Catalog** tab to add DirectCores to the design by instantiating them in the top-level SmartDesign component.
7. Select CoreAHBLSRAM core from the Memory & Controllers group in the Catalog window. Instantiate the CoreAHBLSRAM core to the design by right-clicking on it and selecting Instantiate in SmartFusion2_FIC_Demo.
Step 3: Creating Design using SmartDesign

8. Click **OK** in the CoreAHBLSRAM configuration window to keep the default memory configuration.
9. Instantiate **CoreGPIO** DirectCore in the design by selecting it from the **Peripherals** group of the Catalog. This brings up the CoreGPIO configuration window.

10. In the CoreGPIO configuration window, use the following settings and keep the rest at default states:
- Number of I/Os: 8
- Output enable: Internal

11. Click **OK** after completion of CoreGPIO configuration.

12. Instantiate the SmartFusion2 SoC FPGA **Clock Conditioning Circuitry (CCC)** macro in the design by selecting it from the **Clock & Management** group of the Catalog. It brings up FAB CCC configurator window.

13. In the FAB CCC configurator, make the following settings and keep the rest of the settings at default states:
 - Reference Clock source: Select 25/50 MHz Oscillator from the Oscillators category
 - Reference Clock frequency: 50 MHz
 - GL0 Frequency: 50 MHz **Figure 24** shows the resultant FAB CCC configurator window.
Step 3: Creating Design using SmartDesign

14. Click OK after completion of FAB CCC configuration.

15. Instantiate the SmartFusion2 SoC FPGA Chip Oscillators macro in the design by selecting it from the Clock & Management group of the Catalog. It brings up the Chip Oscillators configurator window.

16. In the chip oscillator’s configurator window, use the following settings and keep the rest at their default states. Figure 25 shows the resultant chip oscillator’s configurator window.
 - On-Chip 25/50 MHz RC Oscillator: Enable
 - Drives Fabric Logic: Disabled
 - Drives Fabric CCC(s): Enable
17. Click **OK** after completion of Chip Oscillator's configuration.

18. Instantiate the **CoreAHBLite** bus in the design by selecting it from the **Bus Interfaces** group of the Catalog. It brings up the CoreAHBLite bus configurator window.

In CoreAHBLite bus configurator,
- **Select** **M0 can access slot 5** under the Enable Master access section to enable slot 5.

With this configuration, the MSS Master can access the connected slave at the memory mapped address: 0x35000000 via FIC_0.
Step 3: Creating Design using SmartDesign

19. Click **OK** after completion of the CoreAHBLite bus configuration.

20. Instantiate the **CoreAPB3** bus in the design by selecting it from Bus Interfaces group of the Catalog. It brings up CoreAPB3 bus configurator window.

 In the CoreAPB3 bus configurator, set the following configuration and keep the other settings as default:
 - Number of address bits driven by master: 32
 - Enable Slot 8 and disable all other APB slots under the Enabled APB Slave Slots section.

 Figure 27 shows the resultant CoreAPB3 bus configurator window.
21. Click **OK** after completion of CoreAPB3 bus configuration.

22. Connect the component bus interfaces using the **Auto Connect** feature of the Libero SoC tool. Right-click in the top-level SmartDesign canvas and select the **Auto Connect** option. This connects the FPGA fabric peripherals to the MSS FIC interfaces through the CoreAHBLite bus and CoreAPB3 bus.

Note: You can also connect the ports by selecting them using **CTRL**, right-clicking any of the selected ports, and selecting **Connect**.
Step 3: Creating Design using SmartDesign

23. Click OK in the Modify Memory Map window.

Figure 28. Auto Connection

Figure 29 and Figure 30 show the address maps for AHBL and APB3 peripherals.

Figure 29. CoreAHBLSRAM Address Map
24. Arrange the instances in the top-level SmartDesign component by using the Auto Arrange Instances feature of the Libero SoC tool. Right-click in the top-level SmartDesign canvas and select Auto Arrange Instances.

25. Maximize the work area and select Zoom To Fit. Figure 32 shows the resultant window with all the component instances.
26. Promote the MSS user reset port MSS_RESET_N_F2M to the top level. Right-click on the MSS_RESET_N_F2M port and select Promote to Top Level.
27. Similarly promote the following ports to the top level:
 - GPIO_IN[7:0]
 - GPIO_OUT[7:0]
 - INT[7:0]

 To select all the ports, select any port, hold down the CTRL key while selecting the other ports, and then right-click and select **Promote to Top Level**.

28. Select the **LOCK** of the CCC_0 component, hold down the CTRL key while selecting the **MCCC_CLK_BASE_PLL_LOCK** of the SmartFusion2_FIC_Demo_MSS_0, and then right-click on any one of the ports and select **Connect**. CCC_0 output (LOCK) will be connected to the SmartFusion2_FIC_Demo_MSS_0 input (MCCC_CLK_BASE_PLL_LOCK).

29. Similarly make the following connections:
 - CCC_0(GL0) → SmartFusion2_FIC_Demo_MSS_0(MCCC_CLK_BASE)
 - CCC_0(GL0) → CoreAHBLite_0(HCLK)
 - CCC_0(GL0) → CoreAHBLSRAM_0(HCLK)
 - CCC_0(GL0) → CoreGPIO_0(PCLK)

30. For a better view of the design, you can use right-click in the SmartDesign canvas and select the **Auto Arrange Instances** option. The final top-level component is shown in the **Figure 35**.
Step 3: Creating Design using SmartDesign

31. Restore the work area by clicking the **Restore** on the toolbar.

32. Save the project by clicking **Project > Save SmartFision2_FIC_demo**.

33. Generate the top-level SmartDesign component by clicking the **Generate** button, as shown in the **Figure 36**.

Figure 35. Final Top Level Component

Figure 36. Generate the Top Level SmartDesign Component
34. Observe the Log window to check the status. Figure 37 shows the successful generation of the top level component. If there are any errors, look at Errors tab in the Log window for more information.

![Log Window](image)

Figure 37. Log Window

This step completes the designing portion of the tutorial.

Step 4: Modifying User BFM Script for Simulation

You can verify the design by using the BFM master or slave model and a BFM script to drive the AHBL/APB input of the DUT. This setup allows the BFM to write or read to the AHBL/APB register set and to verify that the DUT is behaving as expected.

This step explains adding BFM commands to the `user.bfm` file to perform design simulation. For more information on BFM commands refer to the CoreAMBA BFM User's Guide. The `user.bfm` file is created by Libero SoC Design software and is available in the simulation folder of the project files.

1. Select the Files tab in the Libero SoC project window, as shown in Figure 38.

![Project Files Tab](image)

Figure 38. Project Files Tab

2. Under the Simulation folder, double-click the `user.bfm` file to add BFM commands. This opens the `user.bfm` file as a new tab in the project window, as shown in Figure 39.
Step 4: Modifying User BFM Script for Simulation

Interfacing User Logic with the Microcontroller Subsystem

Figure 39. User.bfm File

3. In the user.bfm file, add the following commands after "# add your BFM commands below:" and before "return" statements.

```plaintext
int i
int atmp

//Base Addresses of FIC0 & FIC1 slaves
memmap FIC0_AHBBLRAM_BASE 0x35000000;
memmap FIC1_APBGPIO_BASE 0x80000000;

header "**********SmartFusion2 FIC Tutorial**********"

//Accessing the LSRAM memory
//Data Write to 0x00 location of LSRAM
write w FIC0_AHBBLRAM_BASE 0x0 0x12345678;
//Data Write to 0x04 location of LSRAM
write w FIC0_AHBBLRAM_BASE 0x4 0xAAAAAAAA;

//Readcheck at 0x00 location of LSRAM
readcheck w FIC0_AHBBLRAM_BASE 0x0 0x12345678;
//Readcheck at 0x04 location of LSRAM
readcheck w FIC0_AHBBLRAM_BASE 0x4 0xAAAAAAAA;

//GPIO Configuration
print "*****Configuring GPIO#0,1,2&3 as outputs *****"
loop i 0 7 1
set atmp i * 4 + 0x0
write w FIC1_APBGPIO_BASE atmp 0x05;
readcheck b FIC1_APBGPIO_BASE atmp 0x05;
endloop

//Setting GPIO outputs
write b FIC1_APBGPIO_BASE 0xA0 0xAB;
readcheck b FIC1_APBGPIO_BASE 0xA0 0xAB;
```
4. Comment the below lines in user.bfm file by keeping '#' at the starting of these lines:

 include "subsystem.bfm"
 call subsystem_init;

5. Save the user.bfm file.

Step 5: Simulating Design Using BFM Models

1. Set up the simulation environment as follows:

 Select Project > Project Settings. On the Project Settings window, under Simulation Options, select DO File to change the simulation run time. Enter 50us in the Simulation Runtime field, as shown in Figure 40.

 ![Figure 40. Project Settings – Do File](image)

Save the Do File configuration by clicking the Save button.

Select the Waveforms tab under Simulation Options and select the Include DO file option. A wave.do file is provided with the project files under Source folder. This wave.do file adds the design relevant ports to the ModelSim waveform window. Browse to the wave.do file and check Log all signals in the design option, as shown in the Figure 41.

Note: You can also add ports or signals of interest in the ModelSim software.
Step 5: Simulating Design Using BFM Models

Interfacing User Logic with the Microcontroller Subsystem

Figure 41. Project Settings - Waveforms

Save the Waveform settings by clicking the Save and then selecting Close.

2. Select the Design Flow tab in the project window.

3. Expand the Verify Pre-Synthesized Design, as shown in Figure 42. Double-click Simulate to invoke ModelSim. ModelSim will be invoked and load the design. Alternatively, you can right-click the Simulate and select Open Interactively.

Figure 42. Design Flow – Verify Pre-Synthesized Design

4. Maximize the ModelSim Transcript window to see the BFM commands execution. Make sure that there are no errors. Figure 43 shows the ModelSim Transcript window.
5. After successful BFM simulation, observe the ModelSim waveform window for the read and write bus transactions to the fabric peripherals, as shown in Figure 44. Notice the result of GPIO configuration BFM commands in GPIO states.
Quit the ModelSim simulator by selecting **File > Quit**.
Quit the Libero by selecting **Project > Exit**.
This step completes the tutorial.

Conclusion

This tutorial outlined the design flow for creating a SmartFusion2 SoC FPGA project using Libero SoC design software, configuring the SmartFusion2 SoC FPGA MSS, interfacing fabric peripherals to the SmartFusion2 SoC FPGA MSS using fabric interface controllers (FIC_0 and FIC_1), and simulation of the design using BFM commands.
List of Changes

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 5</td>
<td>Updated the document for 11.0 production SW release (SAR 47302).</td>
<td>NA</td>
</tr>
<tr>
<td>(April 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 4</td>
<td>Updated the document for Libero 11.0 Beta SP1 software release (SAR 44868).</td>
<td>NA</td>
</tr>
<tr>
<td>(February 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 3</td>
<td>Updated the document for Libero 11.0 Beta SPA software release (SAR 42904).</td>
<td>NA</td>
</tr>
<tr>
<td>(November 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 2</td>
<td>Updated the document for Libero 11.0 Beta launch (SAR 41696).</td>
<td>NA</td>
</tr>
<tr>
<td>(October 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 1</td>
<td>Updated the document for LCP2 software release (SAR 38954).</td>
<td>NA</td>
</tr>
<tr>
<td>(May 2012)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The revision number is located in the part number after the hyphen. The part number is displayed at the bottom of the last page of the document. The digits following the slash indicate the month and year of publication.
Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.
From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
Visit the Microsemi SoC Products Group Customer Support website for more information and support (http://www.microsemi.com/soc/support/search/default.aspx). Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on website.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.
Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.