Section I

1. a. (i) **Required To Calculate:** \((12.3)^2 - (0.246 \div 3)\) exactly.
 Calculation:
 \[
 (12.3)^2 - (0.246 \div 3) = 151.29 - 0.082 \\
 = 151.208 \text{ exactly}
 \]

 (ii) **Required To Calculate:** \((12.3)^2 - (0.246 \div 3)\) to 2 significant figures.
 Calculation:
 The number 151.208 = 150 to 2 significant figures.

b. **Data:** Table showing the depreciation of vehicles over a period.
 (i) **Required To Calculate:** The values of \(p\) and \(q\).
 Calculation:
 Taxi depreciates by 12% per year.

 .: Depreciation of taxi costing $40 000 after 1 year = \(\frac{12}{100} \times 40 000\)

 = $4800

 Hence, value after 1 year = $40 000\) - $4800

 = $35 200

 \(p = 35 200\)

 Depreciation of private car = $25 000\) - $21250

 = $3750

 % Depreciation = \(\frac{3750}{25 000} \times 100\)

 = 15%

 \(q = 15\)

 (ii) **Required To Calculate:** Value of taxi after 2 years.
 Calculation:
 Depreciation of taxi in the 2\(^{nd}\) year is 12% of its value after 1\(^{st}\) year.

 Depreciation in 2\(^{nd}\) year = \(\frac{12}{100} \times 35 200\)

 = $4 224

 .: Value of taxi after 2 years = $35 200\) - $4 224

 = $30 976

 OR
\[A = P \left(1 - \frac{R}{100}\right)^n \]
\[P = 40000 \quad R = -12 \quad n = 2 \]
\[A = 40000 \left(1 - \frac{12}{100}\right)^2 \]
\[= 30976 \]

c. **Data:** GUY $1.00 ≡ US$0.01 and EC $1.00 ≡ US$0.37

(i) **Required To Calculate:** Value of GUY $60 000 in US $.

Calculation:

GUY $1.00 ≡ US$0.01

GUY $60 000 = US$0.01 \times 60 000

= US$600.00

(ii) **Required To Calculate:** Value of US $925 in EC $.

Calculation:

US$0.37 ≡ US$1.00

US$1.00 = EC$ \frac{1.00}{0.37}

US$925.00 = EC$ \frac{1.00}{0.37} \times 925

= EC$2 500.00

2. a. **Required To Simplify:** \(\frac{x - 3}{3} - \frac{x - 2}{5} \)

Solution:

Simplifying

\[\frac{x - 3}{3} - \frac{x - 2}{5} = \frac{5(x - 3) - 3(x - 2)}{15} \]
\[= \frac{5x - 15 - 3x + 6}{15} \]
\[= \frac{2x - 9}{15} \]
b. (i) Required To Factorise: (a) \(x^2 - 5x \), (b) \(x^2 - 81 \\

Factorising:
(a) \(x^2 - 5x = x \cdot x - 5 \cdot x \)
\[= x(x - 5) \]

(b) \(x^2 - 81 = (x)^2 - (9)^2 \)
Difference of 2 squares.
\[= (x - 9)(x + 9) \]

(ii) Required To Simplify: \(\frac{a^2 + 4a}{a^2 + 3a - 4} \)

Solution:
Simplifying
\[\frac{a^2 + 4a}{a^2 + 3a - 4} = \frac{a(a + 4)}{(a - 1)(a + 4)} \]
\[= \frac{a}{a - 1} \]

c. Data: 2 cassettes and 3 CD’s cost $175 and 4 cassettes and 1 CD cost $125. One cassette costs $x and one CD costs $y.

(i) Required To Find: Expression in \(x \) and \(y \) for the information given.

Solution:
2 cassettes at $x each and 3 CD’s at $y each cost \((2 \times x) + (3 \times y) \),
Hence, \(2x + 3y = 175 \) ...(1)
4 cassettes and 1 CD cost \((4 \times x) + (1 \times y) \),
Hence, \(4x + y = 125 \) ...(2)

(ii) Required To Calculate: Cost of one cassette.

Calculation:
From (2)
\[y = 125 - 4x \]
Substitute in (1)
\[2x + 3(125 - 4x) = 175 \]
\[2x + 375 - 12x = 175 \]
\[375 - 175 = 12x - 2x \]
\[10x = 200 \]
\[x = 20 \]
\[\therefore \text{Cost of one cassette is } \$20. \]
3. a. **Data:** Diagram of a quadrilateral $KLMN$ with $LM = LN = LK$, $\angle KLM = 140^\circ$ and $\angle LKN = 40^\circ$.

![Diagram of a quadrilateral KLMN with LM = LN = LK, angle KLM = 140° and angle LKN = 40°.](image)

(i) **Required To Calculate:** $\angle LNK$

Calculation:
- $LK = LN$ (data)
- $\angle LNK = 40^\circ$
- (Base angles of an isosceles triangle are equal).

(ii) **Required To Calculate:** $\angle NLM$

Calculation:
- $\angle NLM = 180^\circ - (40^\circ + 40^\circ)$
- $= 100^\circ$
- (Sum of angles in a triangle = 180°).
- $\angle NLM = 140^\circ - 100^\circ$
- $= 40^\circ$

(iii) **Required To Calculate:** $\angle KNM$

Calculation:
- $LN = LM$ (data)
- $\angle LNM = \angle LMN$
- $\angle LNM = \frac{180^\circ - 40^\circ}{2}$
- $= 70^\circ$
- (Base angles in an isosceles triangle are equal and sum of angles in a triangle = 180°).
- $\angle KNM = 40^\circ + 70^\circ$
- $= 110^\circ$
b. **Data:** Survey done on 39 students on the ability to ride a bike and/or drive a car.

 (i) **Required To Complete:** Venn diagram to represent the information given.
 Solution:

 ![Venn Diagram](image)

 (ii) **Required To Find:** Expression in x for the number of students in the survey.
 Solution:
 No. of students in the survey $= (18 - x) + x + (15 - x) + 3x$
 $= 33 + 2x$

 (iii) **Required To Calculate:** x
 Calculation:
 Hence,
 $33 + 2x = 39$
 $2x = 39 - 33$
 $x = 3$

4. **Data:** $AB = 8$ cm, $\hat{BAC} = 60^\circ$ and $AC = 5$ cm

 a. **Required To Construct:** Triangle ABC based on the information given.
 Solution:

 ![Triangle ABC](image)
b. **Required To Find:** Length of BC
 Solution:
 $BC = 7$ cm (by measurement)

c. **Required To Calculate:** Perimeter of $\triangle ABC$
 Calculation:
 Perimeter of $\triangle ABC = 5$ cm + 8 cm + 7 cm
 $= 20$ cm

d. **Required To Draw:** Line CD which is perpendicular to AB and meets AB at D.
 Solution:

![Diagram of triangle ABC with perpendicular line CD]

e. **Required To Find:** The length of CD.
 Solution:
 $CD = 4.3$ cm (by measurement)

f. **Required To Calculate:** Area of $\triangle ABC$
 Calculation:
 Area of $\triangle ABC = \frac{8 \times 4.3}{2} = 17.2$ cm2
5. **Data:** Diagram illustrating the graph of the function \(f(x) = x^2 - 2x - 3 \) for \(a \leq x \leq b \) and the tangent at (2, -3).

 a. **Required To Find:** \(a \) and \(b \).

 Solution:

\[
\begin{align*}
x & \geq -2 \quad \text{and} \quad x \leq 4. \\
\therefore \quad a & = -2 \quad \text{and} \quad b = 4 \quad \text{from the diagram, that is} \quad -2 \leq x \leq 4.
\end{align*}
\]

b. **Required To Find:** \(x \) for \(x^2 - 2x - 3 = 0 \).

 Solution:

\[
\begin{align*}
& \quad \text{cuts the } x \text{ – axis at } -1 \text{ and } 3 \text{ as seen on the diagram. Therefore,} \\
& \quad \text{the values of } x \text{ are } -1 \text{ and } 3.
\end{align*}
\]
c. **Required To Find:** Coordinates of the minimum point on the graph.

Solution:

The minimum point of $f(x)$ is $(1, -4)$ as seen on the diagram.

d. **Required To Find:** Whole number values of x for which $x^2 - 2x - 3 < 1$.

Solution:

From the diagram, $x^2 - 2x - 3 < 1$ for $x > -1.2$ and $x < 3.2$, that is $-1.2 < x < 3.2$.

$x \in W \quad \therefore x = \{0, 1, 2, 3\}$
e. **Required To Find:** gradient of \(f(x) = x^2 - 2x - 3 \) at \(x = 2 \).

Solution:

Choosing \((2, -3)\) and \((4, 1)\) as 2 points on the tangent to \(f(x) \) at \((2, -3)\).

Gradient

\[
\begin{align*}
\text{Gradient} &= \frac{1 - (-3)}{4 - 2} \\
&= \frac{4}{2} \\
&= 2
\end{align*}
\]

\(\therefore\) Gradient of \(f(x) \) at \((2, -3)\) is 2.

6. **Data:** Diagram showing the direction and distance of a man walking.

a. **Required To Complete:** The diagram given showing distances \(x \) km, \((x + 7)\) km, and 13 km.

Solution:

![Diagram showing the direction and distance of a man walking.](image)
b. **Required To Find:** Equation in \(x \) that satisfies Pythagoras’ Theorem and that simplifies to \(x^2 + 7x - 60 = 0 \).

Solution:

\[
(x)^2 + (x + 7)^2 = (13)^2 \quad \text{(Pythagoras’ Theorem)}
\]

\[
x^2 + (x^2 + 14x + 49) = 168
\]

\[
2x^2 + 14x - 120 = 0
\]

\[
\div 2
\]

\[
x^2 + 7x - 60 = 0
\]

Q.E.D.

c. **Required To Find:** Distance \(GH \).

Solution:

\[
x^2 + 7x - 60 = 0
\]

\[
(x + 12)(x - 5) = 0
\]

\[
x = -12 \text{ or } 5
\]

\[
x \neq -12 \text{ (since } GH \text{ and } HF \text{ would be negative)}
\]

\[
x = 5 \text{ only}
\]

\[
GH = 5 \text{ km}
\]

d. **Required To Find:** Bearing of \(F \) from \(G \).

Solution:

The bearing of \(F \) from \(G \) is illustrated by \(\theta \).

\[
\tan \theta = \frac{12}{5}
\]

\[
\theta = \tan^{-1}\left(\frac{12}{5}\right)
\]

\[
\theta = 67.4^\circ
\]

\[
\therefore \text{ The bearing of } F \text{ from } G \text{ is } 067.4^\circ
\]
7. **Data:** Table showing the gains in mass of 100 cows over a certain period.
 a. **Required To Complete:** Table of information given.

 Solution:
 Modifying the table for the data of the continuous variable

<table>
<thead>
<tr>
<th>Gain in mass in kg</th>
<th>L.C.B</th>
<th>U.C.B.</th>
<th>Mid-class Interval, (\frac{L.C.B. + U.C.B.}{2})</th>
<th>Frequency, (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 9</td>
<td>2</td>
<td>2</td>
<td>(\frac{4.5 + 9.5}{2} = 7)</td>
<td>2</td>
</tr>
<tr>
<td>10 – 14</td>
<td>29</td>
<td>2</td>
<td>(\frac{9.5 + 14.5}{2} = 12)</td>
<td>29</td>
</tr>
<tr>
<td>15 – 19</td>
<td>37</td>
<td>2</td>
<td>(\frac{14.5 + 19.5}{2} = 17)</td>
<td>37</td>
</tr>
<tr>
<td>20 – 24</td>
<td>37</td>
<td>2</td>
<td>(\frac{19.5 + 24.5}{2} = 22)</td>
<td>16</td>
</tr>
<tr>
<td>25 – 29</td>
<td>37</td>
<td>2</td>
<td>(\frac{24.5 + 29.5}{2} = 27)</td>
<td>14</td>
</tr>
<tr>
<td>30 – 34</td>
<td>37</td>
<td>2</td>
<td>(\frac{29.5 + 34.5}{2} = 32)</td>
<td>2</td>
</tr>
</tbody>
</table>

b. (i) **Required To Estimate:** Mean gain in mass of the 100 cows.

 Solution:
 The mean gain, \(\bar{x} \)
 \[
 \bar{x} = \frac{\sum fx}{\sum f} = \frac{(2 \times 7) + (29 \times 12) + (37 \times 17) + (16 \times 22) + (14 \times 27) + (2 \times 32)}{\sum f = 100}
 \]
 \[
 = \frac{17.85 \text{ kg}}{}
 \]

 (ii) **Required To Draw:** The frequency polygon for the information given.

 Solution:
 The points (2, 0) and (37, 0) are obtained by extrapolation as the frequency polygon is to be bounded by the horizontal axis.
c. **Required To Calculate:** Probability that a randomly chosen cow gained 20 kg or more.

Solution:

\[
P(\text{cow gained } \geq 20 \text{ kg}) = \frac{\text{No. of cows gaining } \geq 20 \text{ kg}}{\text{Total no. of cows}}
\]

\[
= \frac{16 + 14 + 2}{\sum f = 100}
\]

\[
= \frac{32}{100}
\]

\[
= \frac{8}{25}
\]
8. **Data:** Drawings showing a sequence of squares made from toothpicks.
 a. (i) **Required To Draw:** Next shape in the sequence.

 ![Drawing of squares made from toothpicks]

 Solution:

 (ii) The column 2 is a product of three numbers, that is

 \[
 (n + 1) \times 2 \times n \times 2.
 \]

 a) **Required To Complete:** Table when \(n = 4 \)

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, (n), of one side of square</td>
<td>Pattern for calculating number of toothpicks in square</td>
<td>Total number of toothpicks in square</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>(1 \times 2 \times 2)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>(2 \times 3 \times 2)</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>(3 \times 4 \times 2)</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>(4 \times 5 \times 2)</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>(7 \times 8 \times 2)</td>
<td>112</td>
</tr>
</tbody>
</table>

 \[
 n = 10 \rightarrow 10 \times 11 \times 2 = 220
 \]

 \[
 r = n \times (n + 1) \times 2
 \]

 \[
 s = 10 \rightarrow r = 2(10 + 1) \times 2 = 220
 \]

 \[
 2n(n + 1)
 \]

 \[
 2n(10 + 1)
 \]
Solution:
When column 1 is 4

Column 2 = \(4 \times (4 + 1) \times 2\)
\[= 4 \times 5 \times 2\]

Column 3 is the result = 40 of column 2.

b) **Required To Complete:** The table when \(n = 7\)

Solution:
When column 1 is 7

Column 2 = \(7 \times (7 + 1) \times 2\)
\[= 7 \times 8 \times 2\]

And column 3 is 112.

b. (i) **Required To Complete:** The table for length of side \(n\).

Solution:
When column 1 is \(n\), column 2 is \(r\).
\[\therefore r = n \times (n + 1) \times 2\]
\[= 2n(n + 1)\]

Col 3 = \(2n(n + 1)\)

(ii) **Required To Complete:** The table when column 3 is 220.

Solution:
Column 3 is 220.

\[n \times (n + 1) \times 2 = 220\]
\[2n(n + 1) = 220\]
\[n(n + 1) = 110\]
\[n^2 + n - 110 = 0\]
\[(n + 11)(n - 10) = 0\]
\[n = -11 \text{ or } 10\]
\[n \neq -ve \]
\[n = 10 \]

Therefore, in (b) (ii) \(s = 10 \) and

Column 2 \(= 10 \times (10 + 1) \times 2 \)
\(= 10 \times 11 \times 2 \)

9. a. **Data:** \(y = x + 2 \) and \(y = x^2 \)

Required To Calculate: \(x \) and \(y \)

Calculation:

Let \(y = x + 2 \ldots (1) \) and \(y = x^2 \ldots (2) \)

Equating

\[x^2 = x + 2 \]
\[x^2 - x - 2 = 0 \]
\[(x - 2)(x + 1) = 0 \]

\[\therefore x = 2 \text{ or } -1 \]

When \(x = 2 \)

\[y = 2 + 2 = 4 \]

When \(x = -1 \)

\[y = (-1)^2 = 1 \]

Hence, \(x = 2 \) and \(y = 4 \) **OR** \(x = -1 \) and \(y = 1 \).

b. **Data:** Strip of wire 32 m long is cut into 2 pieces and formed into a square and a rectangle.

\[\begin{array}{c}
\text{Square} \\
x \text{ cm} \\
\hline
\text{Rectangle} \\
l \text{ cm} \\
3 \text{ cm}
\end{array} \]

(i) **Required To Find:** Expression in terms of \(x \) and \(l \) for the length of the strip of wire.

Solution:

Perimeter of square \(= (x \times 4) \)
\(= 4x \text{ cm} \)

Perimeter of rectangle \(= 2(l + 3) \)
\(= 2l + 6 \text{ cm} \)
\[4x + 2l + 6 = 32 \]

(ii) **Required To Prove:** \(l = 13 - 2x \)

Proof:
\[
\begin{align*}
4x + 2l + 6 &= 32 \\
4x + 2l &= 32 - 6 \\
4x + 2l &= 26 \\
\div 2 \\
2x + l &= 13 \\
l &= 13 - 2x
\end{align*}
\]

(iii) **Required To Prove:** \(S = x^2 - 6x + 39 \).

Proof:
\[
S = (x^2) + (3)(l)
\]
\[
S = x^2 + 3l
\]
\[
S = x^2 + 3(13 - 2x)
\]
\[
= x^2 + 39 - 6x
\]
\[
= x^2 - 6x + 39
\]

Q.E.D.

(iv) **Required To Calculate:** \(x \) for which \(S = 30.25 \)

Calculation:
\[
x^2 - 6x + 39 = 30.25
\]
\[
x^2 - 6x + 8.75 = 0
\]
\[
\times 4
\]
\[
4x^2 - 24x + 35 = 0
\]
\[
(2x - 5)(2x - 7) = 0
\]
\[
x = \frac{2}{2} \text{ or } 3 \frac{1}{2}
\]

Hence, when \(S = 30.25 \), \(x = \frac{2}{2} \) or \(3 \frac{1}{2} \).

10. **Data:** Conditions for the parking of \(x \) vans and \(y \) cars at a lot.

(i) **Required To Find:** Inequality for the information given.

Solution:
No. of vans = \(x \)
No. of cars = \(y \)
Lot has space for no more than 60 vehicles. Therefore,
\[x + y \leq 60 \quad ...(1) \]
(ii) **Data:** Owner must part at least 10 cars.
Required To Find: Inequality for the information given.
Solution:
No. of cars is at least 10.
\[y \geq 10 \] \hspace{1cm} (2)

(iii) **Data:** Number of cars parked must be fewer than or equal to twice the number of vans parked.
Required To Find: Inequality for the information given.
Solution:
The no. of cars parked must be fewer than or equal to twice the number of vans.
\[y \leq 2x \] \hspace{1cm} (3)

(iv) **Required To Draw:** The graphs of the lines associated with the inequalities and shaded the region which satisfies all three.
Solution:
Obtaining 2 points on the line \(x + y = 60 \).

When \(x = 0 \) \hspace{1cm} 0 + y = 60
\[y = 60 \]

The line \(x + y = 60 \) passes through the point (0, 60).

When \(y = 0 \) \hspace{1cm} x + 0 = 60
\[x = 60 \]

The line \(x + y = 60 \) passes through the point (60, 0).

The side with the smaller angle satisfies the \(\leq \) region.
The region which satisfies \(x + y \leq 60 \) is
The line $y = 10$ is a horizontal straight line.
The region which satisfies $y \geq 10$ is

Obtaining 2 points on the line $y = 2x$.
The line $y = 2x$ passes through the origin $(0, 0)$.
When $x = 20 \quad y = 2(20) \quad y = 40$
The line $y = 2x$ passes through the point $(20, 40)$.

The side with the smaller angle satisfies the \leq region.
The region which satisfies $y \leq 2x$ is

The region which satisfies all three inequalities is the area in which all three shaded regions overlap.
Data: Parking fee for a van is $6 and parking fee for a car is $5.
Required To Find: Expression in x and y for total fees charged for parking x vans and y cars.

Solution:
The total fees on x vans at 6 each and y cars at 5 each

$$= (x \times 6) + (y \times 5)$$

$$= 6x + 5y$$

(vi) **Required To Find:** Vertices of the shaded region.

Solution:
The vertices are $(5, 10)$, $(20, 40)$ and $(50, 10)$.

(vii) Required To Calculate: Maximum fees charged.

Calculation:
Testing $(20, 40)$ and $(50, 10)$

$x = 20$ \hspace{1cm} $y = 40$

Fees $= 6(20) + 5(40)$

$= 320$

$x = 50$ \hspace{1cm} $y = 10$

Fees $= 6(50) + 5(10)$

$= 350$

\therefore Maximum fee charged is 350, when there are 50 vans and 10 cars.

11. a. **Data:** Diagram of a vertical tower and antenna mounted atop. Point P lies on horizontal ground.

(i) **Required To Complete:** The diagram given, showing the distance 28 m, angles 40° and 54° and any right angles.

Solution:

(ii) **Required To Calculate:** Length of antenna TW.

Calculation:
\[\frac{TF}{28} = \tan 40^\circ \]

\[TF = 28 \tan 40^\circ \]

\[\frac{WF}{28} = \tan 54^\circ \]

\[WF = 28 \tan 54^\circ \]

Length of antenna = Length of \(WF \) – Length of \(TF \)

\[= 28 \tan 54^\circ - 28 \tan 40^\circ \]

\[= 15.04 \text{ m} \]

\[= 15.0 \text{ m} \]

b. **Data:** Diagram showing a circle centre \(O \) and tangents \(BD \) and \(DCE \). \(B \hat{C}D = 70^\circ \)

![Diagram of a circle with tangents and angles](image)

(i) **Required To Calculate:** \(O \hat{C}E \)

Calculation:

\(O \hat{C}E = 90^\circ \)

(Angles made by tangent to a circle and radius, at point of contact = 90°).

(ii) **Required To Calculate:** \(\hat{B}AC \)

Calculation:

\[\hat{B}AC = \frac{1}{2} (140^\circ) \]

\[= 70^\circ \]
(Angles subtended by a chord at the centre of the circle equal twice the angle is subtends at the circumference, standing on the same arc).

(iii) **Required To Calculate:** $B\hat{O}C$
Calculation:
\[O\hat{C}B = 180^\circ - (70^\circ + 90^\circ)\]
\[= 20^\circ\]
(Angles in a straight line).
\[OB = OC \quad \text{(radii)}\]
\[\hat{O}B\hat{C} = 20^\circ\]
(Base angles of an isosceles triangle are equal).
\[B\hat{O}C = 180^\circ - (20^\circ + 20^\circ)\]
\[= 140^\circ\]
(Sum of angles in a triangle = 180°).

(iv) **Required To Calculate:** $B\hat{D}C$
Calculation:
\[B\hat{D}C = 360^\circ - (90^\circ + 90^\circ + 140^\circ)\]
\[= 40^\circ\]
(Sum of angles in a quadrilateral is 360°).

12. a. **Data:** Parallelogram $EFGH$ with $EH = 4.2$ cm, $EF = 6$ cm and $\hat{H}\hat{E}F = 70^\circ$

(i) **Required To Calculate:** Length of HF.
Calculation:
\[HF^2 = (4.2)^2 + (6)^2 - 2(4.2)(6)\cos 70^\circ \quad \text{(Cosine Rule)}\]
\[= 36.402\]
\[HF = \sqrt{36.402}\]
\[= 6.033\]
\[= 6.03 \text{ to 2 decimal places}\]
(ii) **Required To Calculate:** Area of parallelogram $EFGH$.

Calculation:

Area of $\triangle HEF = \frac{1}{2} (4.2)(6) \sin 70^\circ$

Diagonal HF bisects the parallelogram $EFGH$.

\therefore Area of parallelogram $EFGH = 2 \left(\frac{1}{2} (4.2)(6) \sin 70^\circ \right)$

$= 23.680$

$= 23.68$ to 2 decimal places

b. This part of the question has not been solved as it involves Earth Geometry which has since been removed from the syllabus.

13. **Data:** Diagram showing the position vectors of 2 points A and C relative to O.

a. **Required To Complete:** The diagram to show B, such that $OABC$ is a parallelogram and \overrightarrow{u}.

Solution:

![Diagram showing position vectors of points A, B, C, and G]

$\overrightarrow{OA} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$ from diagram
\[u = \overrightarrow{OA} + \overrightarrow{OC} \]
\[= \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 4 \end{pmatrix} \]
\[= \begin{pmatrix} 6 \\ 6 \end{pmatrix} \]

b. (i) **Required To Express**: \(\overrightarrow{OA} \) in the form \(\begin{pmatrix} x \\ y \end{pmatrix} \).

Solution:
Since \(A \) is \((6, 2)\) then \(\overrightarrow{OA} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \) is of the form \(\begin{pmatrix} x \\ y \end{pmatrix} \) where \(x = 6 \) and \(y = 2 \).

(iii) **Required To Express**: \(\overrightarrow{OC} \) in the form \(\begin{pmatrix} x \\ y \end{pmatrix} \).

Solution:
Since \(C \) is \((0, 4)\) then \(\overrightarrow{OC} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \) is of the form \(\begin{pmatrix} x \\ y \end{pmatrix} \) where \(x = 0 \) and \(y = 4 \).

(iv) **Required To Express**: \(\overrightarrow{AC} \) in the form \(\begin{pmatrix} x \\ y \end{pmatrix} \).

Solution:
\[\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} \]
\[= -\begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 4 \end{pmatrix} \]
\[= \begin{pmatrix} -6 \\ 2 \end{pmatrix} \]
\[\overrightarrow{AC} = \begin{pmatrix} -6 \\ 2 \end{pmatrix} \] is of the form \(\begin{pmatrix} x \\ y \end{pmatrix} \) where \(x = -6 \) and \(y = 2 \).

c. **Data**: \(G \) is the midpoint of \(OB \).

(i) **Required To Find**: Coordinates of \(G \).

Solution:
\[\overrightarrow{OB} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \]
\[\overrightarrow{OG} = \frac{1}{2} \overrightarrow{OB} \]
\[= \frac{1}{2} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \]
\[= \begin{pmatrix} 3 \\ 3 \end{pmatrix} \]
Hence G is (3, 3)

(ii) Required To Prove: A, G and C lie on a straight line.
Proof:
\[\overrightarrow{AC} = \begin{pmatrix} -6 \\ 2 \end{pmatrix} \]
\[\overrightarrow{AG} = \overrightarrow{AO} + \overrightarrow{OG} \]
\[= \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} \]
\[= \begin{pmatrix} -3 \\ 1 \end{pmatrix} \]
\[= \frac{1}{2} \overrightarrow{AC} \]
\[\overrightarrow{AG} \] is a scalar multiple of \(\overrightarrow{AC} \). \(\overrightarrow{AG} \) and \(\overrightarrow{AC} \) are parallel. G is a common point, therefore, G lies on \(\overrightarrow{AC} \), hence, A, G and C lies on the same straight line, that they are collinear.

14. a. Data: \[|M| = \begin{pmatrix} 2 & 3 \\ -1 & x \end{pmatrix} = 9 \]
(i) Required To Calculate: \(a \)
Calculation:
\[|M| = 9 \]
\[(2 \times x) - (3 \times -1) = 9 \]
\[2x + 3 = 9 \]
\[2x = 6 \]
\[x = 3 \]

(ii) Required To Calculate: \(M^{-1} \)
Calculation:
\[
\begin{align*}
M &= \begin{pmatrix} 2 & 3 \\ -1 & 3 \end{pmatrix} \\
M^{-1} &= \frac{1}{9} \begin{pmatrix} 3 & -3 \\ -(-1) & 2 \end{pmatrix} \\
&= \begin{pmatrix} \frac{3}{9} & -\frac{3}{9} \\ \frac{1}{9} & \frac{2}{9} \end{pmatrix}
\end{align*}
\]

(iii) Required To Prove: \(M^{-1}M = I \)
Proof:
\[
M_{2 \times 2} \times M_{2 \times 2}^{-1} = \begin{pmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{pmatrix}
\]
\[
e_{11} = \left(2 \times \frac{3}{9} \right) + \left(3 \times \frac{1}{9} \right) \\
= \frac{9}{9} \\
= 1
\]
\[
e_{12} = \left(2 \times -\frac{3}{9} \right) + \left(3 \times \frac{2}{9} \right) \\
= \frac{0}{9} \\
= 0
\]
\[
e_{21} = \left(-1 \times \frac{3}{9} \right) + \left(3 \times \frac{1}{9} \right) \\
= \frac{0}{9} \\
= 0
\]
\[
e_{22} = \left(-1 \times -\frac{3}{9} \right) + \left(3 \times \frac{2}{9} \right) \\
= \frac{9}{9} \\
= 1
\]
\[
M \times M^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
= I
\]

Q.E.D.
b. **Data:** Graph showing line segment AC and its image $A'C'$ after a transformation $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$.

![Graph showing line segment AC and its image A'C' after a transformation](image)

(i)
(a) **Required To Express:** A and C as a single 2×2 matrix.
Solution:
Coordinates of A and C in matrix form is $\begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$.

(b) **Required To Express:** A' and C' as a single 2×2 matrix.
Solution:
Coordinates of A' and C' in matrix form is $\begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix}$.

(ii) **Required To Find:** Equation to represent the transformation of AC onto $A'C'$.
Solution:
$$AC \rightarrow A'C'$$
$$\begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ -4 & -3 \end{pmatrix}$$

(iii) **Required To Calculate:** p, q, r and s
Calculation:
Equating corresponding entries
Similarly,
\[10p + 20q = 10 \]
\[-10p - 6q = -10 \]
\[14q = 0 \]
\[\therefore q = 0 \text{ and } p = 1 \]
Similarly,
\[5r + 3s = -3 \quad \ldots (4) \]
\[-10r - 6s = 6 \]
\[10r + 20s = -20 \]
\[-10r - 6s = 6 \]
\[14s = -14 \]
\[s = -1 \text{ and } r = 0 \]
\[\therefore p = 1, q = 0, r = 0 \text{ and } s = -1 \text{ and the matrix } \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \]
which represents a reflection in the \(x \)-axis.
We may also deduce this by observing the object \(AC \) and its image \(A'C' \).