JANUARY 2007 MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a. (i) **Required To Calculate:** \(5.24(4 - 1.67)\)

 Calculation:

 \[
 5.24(4 - 1.67) = 5.24(2.33) \\
 = 12.2092 \quad \text{(exactly)} \\
 = 12.2 \text{ to 1 decimal place}
 \]

(ii) **Required To Calculate:** \(\frac{1.68}{1.5^2 - 1.45}\)

 Calculation:

 \[
 \frac{1.68}{1.5^2 - 1.45} = \frac{1.68}{2.25 - 1.45} \\
 = \frac{1.68}{0.8} \\
 = 2.1 \text{ (exactly)}
 \]

b. **Data:** Aaron received 2 shares totaling $60 from a sum shared in the ratio 2 : 5.

 Required To Calculate: The sum of money.

 Calculation:

 Aaron’s 2 shares total $60

 \[\therefore \text{1 share} = \frac{60}{2} = 30\]

 Total no. of shares = 2 + 5 = 7

 Sum that was shared altogether

 \[= 30 \times 7 = 210\]

 Data: Cost of gasoline is $10.40 for 3 litres. All currency in $EC.

 (i) **Required To Calculate:** Cost of 5 litres of gasoline.

 Calculation:

 If 3 litres of gasoline cost $10.40

 Then 1 litre of gasoline costs \(\frac{10.40}{3}\)

 And 5 litres of gasoline cost \(\frac{10.40}{3} \times 5\)

 \[= \frac{17.333}{3} = 17.33 \text{ to nearest cent}\]
(ii) **Required To Calculate:** Volume of gasoline that can be bought with $50.00.
Calculation:
10.40 affords 3 litres
1.00 will afford \(\frac{3}{10.40} \) litres
50.00 will afford \(\left(\frac{3}{10.40} \times 50.00 \right) \) litres
\[= 14.4 \text{ litres} \]
\[= 14 \text{ litres to the nearest whole number} \]

2. a. **Data:** \(a = 2, \ b = -3 \) and \(c = 4 \)
 (i) **Required To Calculate:** \(ab - bc \)
 Calculation:
 \[ab - bc = 2(-3) - (-3)4 \]
 \[= -6 + 12 \]
 \[= 6 \]
 (ii) **Required To Calculate:** \(b(a - c)^2 \)
 Calculation:
 \[b(a - c)^2 = -3(2 - 4)^2 \]
 \[= -3(-2)^2 \]
 \[= -3(4) \]
 \[= -12 \]

b. (i) **Data:** \(\frac{x}{2} + \frac{x}{3} = 5 \)
 Required To Find: \(x \) where \(x \in Z \)
 Solution:
 \[\frac{x}{2} + \frac{x}{3} = \frac{5}{1} \]
 \[\times 6 \]
 \[6\left(\frac{x}{2}\right) + 6\left(\frac{x}{3}\right) = 6\left(\frac{5}{1}\right) \]
 \[3x + 2x = 30 \]
 \[5x = 30 \]
 \[x = 6 \in Z \]
 OR
\[
\frac{x}{2} + \frac{x}{3} = 5
\]
\[
\frac{3(x) + 2(x)}{6} = 5
\]
\[
\frac{5x}{6} = 5
\]
\[
\times 6
\]
\[
5x = 30
\]
\[
x = 6 \in \mathbb{Z}
\]

(ii) **Data:** \(4 - x \leq 13\)

Required To Find: \(x\) where \(x \in \mathbb{Z}\)

Solution:
\[
4 - x \leq 13
\]
\[
-x \leq 13 - 4
\]
\[
\times -1
\]
\[
x \geq -9
\]

That is \(x = \{-9, -8, -7, \ldots, x \in \mathbb{Z}\}\)

c. **Data:** 1 muffin costs \(m\) and 3 cupcakes cost \(2m\)

(i) (a) **Required To Find:** Cost of five muffins in terms of \(m\).

Solution:
1 muffin costs \(m\)
5 muffins costs \(\$(m \times 5)\)
\[
= 5m
\]

(b) **Required To Find:** Cost of six cupcakes in terms of \(m\).

Solution:
If 3 cupcakes cost \(2m\)
Then 1 cupcake costs \(\frac{2m}{3}\)
And 6 cupcakes cost \(\frac{2m}{3} \times 6\)
\[
= 4m
\]

(ii) **Required To Find:** An equation for the total cost of 5 muffins and 6 cupcakes is \(\$31.50\).

Solution:
\[
5m + 4m = 9m
\]
Hence, \(9m = 31.50\)
\[
9m = 31.50
\]
3. a. (i) **Data:**

![Venn Diagram](image)

Required To Describe: The shaded region using set notation.

Solution:

The region shaded is all of sets A and B, that is $A \cup B$.

(ii) **Data:**

![Venn Diagram](image)

Required To Describe: The shaded region using set notation.

Solution:

The region shaded is the region in U except $A \cup B$, that is $(A \cup B)'$.

(iii) **Data:**

![Venn Diagram](image)

Required To Describe: The shaded region using set notation.

Solution:

The region shaded in the set A only. Hence the shaded region is A.

b. **Data:** $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$P = \{\text{Prime numbers}\}$

$Q = \{\text{Odd numbers}\}$

Required To Draw: A Venn diagram to represent the information given.

Solution:

$P = \{2, 3, 5, 7\}$

$Q = \{1, 3, 5, 7, 9\}$
c. **Data:** Venn diagram illustrating the number of elements in each region.

(i) **Required To Find:** No. of elements in \(A \cup B \).

Solution:

\[
A \cup B = 10 + 4 + 3 = 17
\]

(ii) **Required To Find:** No. of elements in \(A \cap B \).

Solution:

\[
A \cap B = 4
\]

(iii) **Required To Find:** No of elements in \((A \cap B)' \).

Solution:

\[
(A \cap B)' = 10 + 3 + 8 = 21
\]
(iv) **Required To Find:** No. of elements in U.

Solution:

![Image of set U with elements 10, 4, 3, 8]

$$n(U) = 10 + 4 + 3 + 8$$

$$= 25$$

4. a. (i) **Required To Construct:** $\triangle ABC$ with $BC = 6\text{cm}$ and $AB = AC = 8\text{cm}$.

Solution:

![Diagram of triangle ABC with side lengths]

(ii) **Required To Construct:** AD such that AD meets BC at D and is perpendicular to BC.
(iii) (a) **Required To Find:** Length of AD.
Solution:
$AD = 7.3$ cm (by measurement)

(b) **Required To Find:** Size of \hat{ABC}
Solution:
$\hat{ABC} = 68^\circ$ (by measurement)
b. **Data:** \(P = (2, 4) \) and \(Q = (6, 10) \)

(i) **Required To Calculate:** Gradient of \(PQ \).
Calculation:
Gradient of \(PQ \) = \(\frac{10 - 4}{6 - 2} \)
= \(\frac{6}{4} \)
= \(\frac{3}{2} \)

(ii) **Required To Calculate:** Midpoint of \(PQ \).
Calculation:
Let midpoint of \(PQ \) be \(M \).
\[
M = \left(\frac{2 + 6}{2}, \frac{4 + 10}{2} \right)
\]
= \((4, 7) \)

5. a. **Data:** \(f(x) \to 7x + 4 \) and \(g(x) \to \frac{1}{2x} \)

(i) **Required To Calculate:** \(g(3) \)
Calculation:
\[
g(3) = \frac{1}{2(3)}
\]
= \(\frac{1}{6} \)

(ii) **Required To Calculate:** \(f(-2) \)
Calculation:
\[
f(-2) = 7(-2) + 4
\]
= \(-14 + 4 \)
= \(-10 \)
(iii) Required To Calculate: \(f^{-1}(11) \)

Calculation:
Let \(y = 7x + 4 \)
\[y - 4 = 7x \]
\[\frac{y - 4}{7} = x \]
Replace \(y \) by \(x \)
\[\therefore f^{-1}(x) = \frac{x - 4}{7} \]
\[\therefore f^{-1}(11) = \frac{11 - 4}{7} \]
\[= \frac{7}{7} \]
\[= 1 \]

b. (i) \(x = 5 \)
\[A'' = (1,2) \]
(ii) \(B'' = (3,2) \)
\[C'' = (3,-1) \]
(iii) Reflection in the line \(y = 4 \)

6. Data: Table showing a frequency distribution of scores of 100 students in an examination.
(i) Required To Complete: And modify the table given.
Solution:

<table>
<thead>
<tr>
<th>Score (Discrete Variable)</th>
<th>U.C.B</th>
<th>Frequency</th>
<th>Cumulative Frequency</th>
<th>Points to Plot (U.C.B, C.F.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 – 25</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>(25, 0)</td>
</tr>
<tr>
<td>26 – 30</td>
<td>30</td>
<td>18</td>
<td>18 + 5 = 23</td>
<td>(30, 23)</td>
</tr>
<tr>
<td>31 – 35</td>
<td>35</td>
<td>23</td>
<td>23 + 23 = 46</td>
<td>(35, 46)</td>
</tr>
<tr>
<td>36 – 40</td>
<td>40</td>
<td>22</td>
<td>22 + 46 = 68</td>
<td>(40, 68)</td>
</tr>
<tr>
<td>41 – 45</td>
<td>45</td>
<td>21</td>
<td>21 + 68 = 89</td>
<td>(45, 89)</td>
</tr>
<tr>
<td>46 – 50</td>
<td>50</td>
<td>11</td>
<td>11 + 89 = 100</td>
<td>(50, 100)</td>
</tr>
</tbody>
</table>

\[\sum f = 100 \]

The point (20, 0) corresponding to an upper class boundary of 20 and a cumulative frequency value of 0, obtained by checking ‘backwards’, is to be plotted, as the graph of cumulative frequency starts from the horizontal axis.
(ii) **Data:** Scale is 2 cm to represent 5 units on the horizontal axis and 2 cm to represent 10 units on the vertical axis.

Required To Plot: The cumulative frequency curve of the scores.

Solution:

![Cumulative Frequency Curve of Scores](image)

(iii) **Required To Find:** Median score.

Solution:

From the cumulative frequency curve, the median score corresponds to a cumulative frequency value of \(\frac{1}{2} (100) = 50 \) and reads as 36 on the horizontal axis.

\[\therefore \text{Median score} = 36. \]
(iv) **Required To Calculate:** Probability a randomly chosen student has a score greater than 40.

Solution:

\[
P(\text{student chosen at random scores } > 40) = \frac{\text{No. of students scoring } > 40}{\text{Total no. of students}}
\]

\[
= \frac{21 + 11}{\sum f = 100}
\]

\[
= \frac{32}{100}
\]

\[
= \frac{8}{25}
\]

7. a. **Data:** Prism of cross-sectional area 144 cm² and length 30 cm.

(i) **Required To Calculate:** Volume of the prism.

Calculation:

Volume of prism = Area of cross-section \(\times\) Length

\[
= 144 \times 30 \text{ cm}^3
\]

\[
= 4320 \text{ cm}^3
\]

(ii) **Required To Calculate:** Total surface area of the prism.

Calculation:

Cross-section is a square of area 144 cm².

\[
\therefore \text{Length } = \sqrt{144} \text{ cm}^2
\]

\[
= 12 \text{ cm}
\]
Area of front and back faces = 144×2
$= 288 \text{ cm}^2$

Area of L.H.S and R.H.S. rectangular faces = $2(12 \times 30)$
$= 720 \text{ cm}^2$

Area of top and base rectangular faces = $2(12 \times 30)$
$= 720 \text{ cm}^2$

Total surface area of the prism = $288 + 720 + 720$
$= 1728 \text{ cm}^2$

b. Data:

![Diagram of MON sector]

MON is a sector of a circle of radius 15 cm and $MÔN = 45^\circ$.

(i) Required To Calculate: Length of minor arc MN.

Calculation:

Length of arc $MN = \frac{45}{360} \times 2\pi(15)$
$= 11.772$

$= 11.78 \text{ cm to 2 decimal places}$

OR

Using
$s = r\theta$
$s = \text{arc length, } r = \text{radius and } \theta = \text{angle in radians}$
$s = (15)(0.785) = 11.775$

$s = 11.78 \text{ cm to 2 decimal places}$
(ii) **Required To Calculate:** Perimeter of figure MON.

Calculation:

Perimeter of MON = Arc length MON + Length of radius OM + Length of radius ON

= 11.775 + 15 + 15

= 41.775

= 41.78 to 2 decimal places

(iii) **Required To Calculate:** Area of figure MON.

Calculation:

Area of sector MON = \(\frac{45}{360} \pi (15)^2 \)

= 88.312

= 88.31 cm\(^2\) to 2 decimal places

OR

Area of sector = \(\frac{1}{2} r^2 \theta \)

= \(\frac{1}{2} (15)^2 (0.785) \)

= 88.312

= 88.31 cm\(^2\) to 2 decimal places
8. **Data:** Table showing the subdivision of an equilateral triangle.
Required To Complete: The table given.

Solution:

<table>
<thead>
<tr>
<th>n</th>
<th>Result of each step</th>
<th>No. of triangles formed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>$1 = 4^0$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>$4 = 4^1$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$16 = 4^2$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(i) $64 = 4^3$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(ii) $4096 = 4^6$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>(iii) 8</td>
<td></td>
<td>65536 = 4^8</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td>(iv) 4^m</td>
</tr>
</tbody>
</table>

\[\begin{align*}
4 & \mid 65536 \\
4 & \mid 16384 \\
4 & \mid 4096 \\
4 & \mid 1024 \\
4 & \mid 256 \\
4 & \mid 64 \\
4 & \mid 16 \\
4 & \mid 4 \\
4 & \mid 1 \\
\end{align*} \]
Section II

9. a. **Required To Factorise:** (i) \(2p^2 - 7p + 3\), (ii) \(5p + 5q + p^2 - q^2\)

Factorising:

(i) \(2p^2 - 7p + 3 = (2p - 1)(p - 3)\)

(ii) \(5p + 5q + p^2 - q^2 = 5(p + q) + (p - q)(p + q) = (p + q)[5 + (p - q)] = (p + q)(5 + p - q)\)

b. **Required To Expand:** \((x + 3)^2(x - 4)\)

Solution:
Expanding
\[
(x + 3)^2(x - 4) = (x + 3)(x + 3)(x - 4)
= (x^2 + 3x + 3x + 9)(x - 4)
= (x^2 + 6x + 9)(x - 4)
= x^3 + 6x^2 + 9x - 4x^2 - 24x - 36
= x^3 + 2x^2 - 15x - 36
\]
Hence, \((x + 3)^2(x - 4) = x^3 + 2x^2 - 15x - 36\), in descending powers of \(x\).

c. **Data:** \(f(x) = 2x^2 + 4x - 5\)

(i) **Required To Express:** \(f(x) = 2x^2 + 4x - 5\) in the form \(a(x + b)^2 + c\).

Solution:

\[
f(x) = 2x^2 + 4x - 5 = 2(x^2 + 2x) - 5
\]

(Half the coefficient of \(x\) is \(\frac{1}{2}(2) = 1\))

Hence \(f(x) = 2x^2 + 4x - 5\)
\[
= 2(x + 1)^2 + * = 2(x^2 + 2x + 1) + * = 2x^2 + 4x + 2\quad \text{(Hence } * = -7)\]
\[
-7
\]
\[
-5
\]

\(\therefore 2x^2 + 4x - 5 \equiv 2(x + 1)^2 - 7\) is of the form \(a(x + b)^2 + c\) where
\(a = 2 \in \mathbb{R} \)
\(b = 1 \in \mathbb{R} \)
\(c = -7 \in \mathbb{R} \)

OR

\[
2x^2 + 4x - 5 = a(x + 5)^2 + c \\
= a(x^2 + 2bx + b^2) + c \\
= ax^2 + 2abx + ab^2 + c
\]

Equating coefficient of \(x^2 \).
\(a = 2 \in \mathbb{R} \)
Equating coefficient of \(x \).
\(2(2)b = 4 \)
\(b = 1 \in \mathbb{R} \)
Equating constants.
\(2(1)^2 + c = -5 \)
\(c = -7 \in \mathbb{R} \)
\[
\therefore 2x^2 + 4x - 5 \equiv 2(x + 1)^2 - 7
\]

(ii) \textbf{Required To Find:} The equation of the axis of symmetry.
\textbf{Solution:}
If \(y = ax^2 + bx + c \) is any quadratic curve, the axis of symmetry has equation \(x = \frac{-b}{2a} \).
The equation of the axis of symmetry in the quadratic curve
\(f(x) = 2x^2 + 4x - 5 \) is \(x = \frac{-4}{2(2)} \)
\(x = -1 \)

(iii) \textbf{Required To Find:} Coordinates of the minimum point on the curve.
\textbf{Solution:}
\[
\begin{align*}
 f(x) &= 2x^2 + 4x - 5 \\
 &= 2(x + 1)^2 - 7 \\
2(x + 1)^2 &\geq 0 \quad \forall x \\
\therefore f(x)_{\text{min}} &= -7 \text{ at } 2(x + 1)^2 = 0 \\
&\quad \quad x = -1
\end{align*}
\]
(iv) – (v)

Required To Draw: The graph of \(f(x) \) showing the minimum point and the axis of symmetry.

Solution:

![Graph of \(f(x) \)](image)

10. **Data:** Pam must buy \(x \) pens and \(y \) pencils.
 a. (i) **Data:** Pam must buy at least 3 pens.
 Required To Find: An inequality to represent the above information.
 Solution:
 No. of pens bought = \(x \)
 No. of pens is at least 3.
 \(\therefore x \geq 3 \)

 (ii) **Data:** Total number of pens and pencils must not be more than 10.
 Required To Find: An inequality to represent the above information.
 Solution:
 No. of pencils = \(y \)
 Total number of pens and pencils = \(x + y \)
 \(\therefore (x + y) \) is not more than 10.
 \(\therefore x + y \) is less than or equal to 10.
 \(x + y \leq 10 \)

 (iii) **Data:** \(5x + 2y \leq 35 \)
 Required To Find: Information represented by this inequality.
 Solution:
 \(5x + 2y \leq 35 \) (data)
 \(5x \) represents the cost of \(x \) pens at $5.00 each and \(2y \) represents the cost of \(y \) pencils at $2.00 each.
 Total cost is \(5x + 2y \).
Since \(5x + 2y \leq 35 \), then the total cost of \(x \) pens and \(y \) pencils is less than or equal to $35.00.
That is, the total cost of the \(x \) pens and \(y \) pencils is not more than $35.00.

b. (i) **Required To Draw:** The graphs of the two inequalities obtained on answer sheet.

Solution:
The line \(x = 3 \) is a vertical line.
The region \(x \geq 3 \) is

Obtaining 2 points on the line \(x + y = 10 \)
When \(x = 0 \)
\[0 + y = 10 \]
\[y = 10 \]
The line \(x + y = 10 \) passes through the point \((0, 10)\).
When \(y = 0 \)
\[x + 0 = 10 \]
\[x = 10 \]
The line \(x + y = 10 \) passes through the point \((10, 0)\).

The region with the smaller angle satisfies the \(\leq \) region.
The region with satisfies \(x + y \leq 10 \) is
The graph of the line \(x + y = 10 \) was given. It passes through the points (7, 0) and (3, 10).

The region with the smaller angle satisfies the \(\leq \) region. The region which satisfies \(5x + 2y \leq 35 \) is

The line \(y = 0 \) is the horizontal \(x \)-axis. The region which satisfies \(y \geq 0 \) is
The region which satisfies all four inequalities is the area in which all four previously shaded regions overlap. The region which satisfies all four inequalities is
(ii) **Required To Find:** The vertices of the region bounded by the 4 inequalities is shown ABCD (the feasible region)

Solution:

\[A (3, 0) \quad B (3, 7) \quad C (5, 5) \quad D (7, 0) \]
c. **Data:** A profit of $1.50 is made on each pen and a profit of $1.00 is made on each pencil.

(i) **Required To Find:** The profit in terms of x and y.

Solution:

Let the total profit on pens and pencils be P. The profit on x pens at $\frac{1}{2}$ and y pencils at 1 each = \(x \times \frac{1}{2} + y \times 1 \)

\[P = \frac{1}{2}x + y \]

(ii) **Required To Find:** Maximum profit.

Solution:

Choosing only $B (3, 7)$, $C (5, 5)$ and $D (7, 0)$.

At B $x = 3$ $y = 7$

\[P = 3 \left(\frac{1}{2} \right) + 7 \]

= $11\frac{1}{2}$

= 11.50

At C $x = 5$ $y = 5$

\[P = 5 \left(\frac{1}{2} \right) + 5 \]

= $12\frac{1}{2}$

= 12.50

At D $x = 7$ $y = 0$

\[P = 7 \left(\frac{1}{2} \right) \]

= $10\frac{1}{2}$

= 10.50

\[\therefore \text{Maximum profit made is } $12.50 \text{ when Pam buys 5 pens and 5 pencils}. \]
(iii) Required To Find: The maximum number of pencils Pam can buy if she buys 4 pens.

Solution:

When \(x = 4 \) the maximum value of \(y \in \mathbb{Z}^+ \) is 6. Therefore, when 4 pens are bought, the maximum number of pencils that can be bought that satisfies all conditions is 6.
11. a. **Data:** Diagram showing 2 circles of radii 5 cm and 2 cm touching at \(T \), \(XSRY \) is a straight line touching the circles at \(S \) and \(R \).

(i) (a) **Required To State:** Why \(PTQ \) is a straight line.

Solution:
The tangent to both circles at \(T \) is a common tangent.

The tangent makes an angle of 90° with the radius \(PT \) and 90° with the radius \(TQ \).
(Angle made by a tangent to a circle and the radius, at the point of contact = 90°).
\[\therefore P\hat{Q}T = 180° \] (as illustrated) and \(PTQ \) is a straight line.

(b) **Required To State:** The length of \(PQ \).

Solution:
Length of \(PQ \) = Length of \(PT \) + Length of \(TQ \)
\[= 5 + 2 \]
\[= 7 \text{ cm} \]

(c) (i) **Required To State:** Why \(PS \) is parallel to \(QR \).

Solution:
\[P\hat{S}R = Q\hat{S}R = 90° \]
(Angle made by a tangent to a circle and the radius, at the point of contact = 90°).

There are corresponding angles, when PS is parallel to QR and SR is a transversal.

(ii) **Data:** N is a point such that QN is perpendicular to PS.

![Diagram](image)

(a) **Required To Calculate:** The length PN.
Calculation:
$QRSN$ is a rectangle and hence $NS = 2$ cm, $PS = 5$ cm
\[
\therefore PN = 5 - 2 = 3 \text{ cm}
\]

(b) **Required To Calculate:** The length SR.
Calculation:
\[
NQ = \sqrt{(7)^2 - (3)^2} = \sqrt{40} \text{ cm}
\]
\[
SR = NQ = \sqrt{40} \text{ cm exactly}
\]
\[
= 6.324 \text{ cm}
\]
\[
= 6.32 \text{ cm to 2 decimal places}
\]
b. **Data:** Circle, centre O and $MOL = 110^\circ$.

![Diagram of a circle with points M, O, L and angles](image)

(i) **Required To Calculate:** MNL

Calculation:

$$MNL = \frac{1}{2} (110^\circ)$$

$$= 55^\circ$$

(Angle subtended by a chord at the centre of a circle is twice the angle it subtends at the circumference, standing on the same arc).

(ii) **Required To Calculate:** LMO

Calculation:

$$OM = OL \quad \text{(radii)}$$

$$LMO = \frac{180^\circ - 110^\circ}{2}$$

$$= 35^\circ$$

(Base angles of an isosceles triangle are equal and sum of the angles in a triangle = 180°).

12. **Data:** The distances and directions of a boat traveling from A to B and then to C.

a. **Required To Draw:** Diagram of the information given, showing the north direction, bearings 135° and 060° and distances 8 km and 15 km.

Solution:

![Diagram of the boat's journey](image)
b. (i) **Required To Calculate:** The distance AC.

Calculation:

\[AB^2 = 45^\circ + 60^\circ \]
\[= 105^\circ \]
\[AC^2 = (15)^2 + (8)^2 - 2(15)(8)\cos 105^\circ \quad \text{(cosine law)} \]
\[= 18.738 \text{ km} \]
\[= 18.74 \text{ km to 2 decimal places} \]

(ii) **Required To Calculate:** \(B\hat{C}A \)

Calculation:

Let \(B\hat{C}A = \theta \)

\[\frac{15}{\sin \theta} = \frac{18.738}{\sin 105^\circ} \quad \text{(sine law)} \]

\[\therefore \sin \theta = \frac{15 \sin 105^\circ}{18.738} \]
\[= 0.7732 \]

\[\therefore \theta = \sin^{-1}(0.7732) \]
\[\theta = 50.64^\circ \]
\[= 50.6^\circ \text{ to the nearest } 0.1^\circ \]

(iii) **Required To Calculate:** The bearing from \(A \) from \(C \).

Calculation:

The bearing of \(A \) from \(C \) = \(180^\circ + 60^\circ + 50.64^\circ \)
\[= 290.64^\circ \]
\[= 290.6^\circ \text{ to the nearest } 0.1^\circ \]
13. **Data:** Vector diagram with $\overrightarrow{OP} = \vec{r}$, $\overrightarrow{PM} = \vec{s}$ and OMN a straight line with midpoint M.

$\overrightarrow{OX} = \frac{1}{3} \overrightarrow{OM}$ and $\overrightarrow{PX} = 4\overrightarrow{XQ}$

a. **Required To Sketch:** Diagram illustrating the information given.

Solution:

![Diagram](image)

b. (i) **Required To Express:** \overrightarrow{OM} in terms of \vec{r} and \vec{s}.

Solution:

$$\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM}$$

$$= \vec{r} + \vec{s}$$

(ii) **Required To Express:** \overrightarrow{PX} in terms of \vec{r} and \vec{s}.

Solution:

$$\overrightarrow{OX} = \frac{1}{3} \overrightarrow{OM}$$

$$= \frac{1}{3}(\vec{r} + \vec{s})$$

$$\overrightarrow{PX} = \overrightarrow{PO} + \overrightarrow{OX}$$

$$= -\vec{r} + \frac{1}{3}(\vec{r} + \vec{s})$$

$$= -\frac{2}{3}\vec{r} + \frac{1}{3}\vec{s}$$

(iii) **Required To Express:** \overrightarrow{OM} in terms of \vec{r} and \vec{s}.

Solution:

$$\overrightarrow{PX} = 4\overrightarrow{XQ}$$

$$\overrightarrow{PQ} = \frac{5}{4} \overrightarrow{PX}$$

$$= \frac{5}{4} \left(-\frac{2}{3}\vec{r} + \frac{1}{3}\vec{s} \right)$$
\[\overrightarrow{PQ} = -\frac{5}{6}r + \frac{5}{12}s \]
\[\overrightarrow{QM} = \overrightarrow{QP} + \overrightarrow{PM} \]
\[= -\left(-\frac{5}{6}r + \frac{5}{12}s \right) + s \]
\[= \frac{5}{6}r + \frac{7}{12}s \]

c. **Required To Prove:** \(\overrightarrow{PN} = 2\overrightarrow{PM} + \overrightarrow{OP} \)

Proof:
\[2\overrightarrow{PM} = 2(\overrightarrow{s}) \]
\[\overrightarrow{OP} = r \]
\[2\overrightarrow{PM} + \overrightarrow{OP} = 2\overrightarrow{s} + \overrightarrow{r} \]
\[= \overrightarrow{r} + 2\overrightarrow{s} \]
Hence, \(\overrightarrow{PN} = 2\overrightarrow{PM} + \overrightarrow{OP} \) \((= \overrightarrow{r} + 2\overrightarrow{s})\)

Q.E.D

14. a. **Data:** \(D = \begin{pmatrix} 1 & 9p \\ p & 4 \end{pmatrix} \)

Required To Calculate: \(p \)

Calculation:
If \(D = \begin{pmatrix} 1 & 9p \\ p & 4 \end{pmatrix} \) is singular then \(\det D = 0 \).
\[\therefore (1 \times 4) - (9p \times p) = 0 \]
\[4 = 9p^2 \]
\[p^2 = \frac{4}{9} \]
\[p = \pm \frac{2}{3} \]

Hence, \(p = \pm \frac{2}{3} \).
b. **Data:** $2x + 5y = 6$ and $3x + 4y = 8$

(i) **Required To Express:** The above equations in the form $AX = B$.

Solution:

$2x + 5y = 6$

$3x + 4y = 8$

Hence, \[
\begin{pmatrix}
2 & 5 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
6 \\
8
\end{pmatrix}
\]...matrix equation

is of the form $AX = B$ where

$A = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$

$X = \begin{pmatrix} x \\ y \end{pmatrix}$ and

$B = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ are matrices.

(ii) (a) **Required To Calculate:** Determinant of A.

Calculation:

$\det A = (2 \times 4) - (5 \times 3)$

$= 8 - 15$

$= -7$

(b) **Required To Prove:** $A^{-1} = \begin{pmatrix}
-\frac{4}{7} & \frac{5}{7} \\
\frac{3}{7} & -\frac{2}{7}
\end{pmatrix}$.

Proof:

$A^{-1} = -\frac{1}{7}\begin{pmatrix}
4 & -(5) \\
-(3) & 2
\end{pmatrix}$

$= \begin{pmatrix}
-\frac{4}{7} & \frac{5}{7} \\
\frac{3}{7} & -\frac{2}{7}
\end{pmatrix}$

Q.E.D.
(c) **Required To Calculate:** \(x \) and \(y \\

Calculation:

\[
AX = B
\]

\[
\times A^{-1}
\]

\[
A \times A^{-1} \times X = A^{-1} \times B
\]

\[
I \times X = A^{-1} B
\]

\[
X = A^{-1} B
\]

and

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix}
 -\frac{4}{7} & \frac{5}{7} \\
 \frac{3}{7} & -\frac{2}{7}
\end{pmatrix} \begin{pmatrix}
 6 \\
 8
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 \left(-\frac{4}{7} \times 6\right) + \left(\frac{5}{7} \times 8\right) \\
 \left(\frac{3}{7} \times 6\right) + \left(-\frac{2}{7} \times 8\right)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 -\frac{24}{7} + \frac{40}{7} \\
 \frac{18}{7} - \frac{16}{7}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 2 \frac{2}{7} \\
 2 \frac{2}{7}
\end{pmatrix}
\]

Equating corresponding \(x = 2 \frac{2}{7} \) and \(y = 2 \frac{2}{7} \).