SEA MATHS 2009

Section 1

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
<th>Do Not Write Here</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>KC</td>
</tr>
</tbody>
</table>

1. Which digit in the numeral 71 463 represents TENS?

 Answer: 6

 Placing the digits according to their place values, we note:

<table>
<thead>
<tr>
<th>T Th</th>
<th>Th</th>
<th>H</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 000</td>
<td>1 000</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

 The TENS DIGIT is 6.

2. Write the numeral for the number **one million two hundred and three thousand and four**.

 One million 1 000 000
 Two hundred and 3 thousand 203 000
 Four ones 4

 Answer: 1 203 004

<table>
<thead>
<tr>
<th>Millions</th>
<th>Thousands</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>H Th</td>
<td>H TH</td>
</tr>
<tr>
<td>1000000</td>
<td>100000</td>
<td>10000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Calculate:

 \[568 \times 15\]

 Answer: 8520

 \[568 \times 15 = 8520\]

4. Calculate:

 \[2.4 \div 0.8\]

 We can rewrite the division using a fraction format:

 \[
 \frac{2.4}{0.8} = \frac{2.4 \times 10}{0.8 \times 10} = \frac{24}{8} = 3
 \]

 Answer: 3

 Note: It is convenient to have a whole number in the denominator, this can be done by multiplying both numerator and denominator by 10.
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
<th>Do Not Write Here</th>
</tr>
</thead>
</table>
| 5. | Carla scored 60 marks out of 75 on a Mathematics test. Express Carla’s score as a percentage. | Maximum marks possible on the test = 75
The score made by Carla = 60.
Carla’s score as a percent of the total:
\[\text{Marks scored} \div \text{Maximum mark} \times 100 \]
\[\frac{60}{75} \times 100 \]
\[= 80\% \] | KC | AT | PS |
| 6. | Circle the LARGEST decimal fraction in the set below. | We enter the decimal fractions in a decimal place value chart as follows:
| 0.43 | 0.6 | 0.079 | |
| Answer: | The place values in order of size is;
Tenths, Hundredths, Thousandths.
0.43 has 4 tenths
0.6 has 6 tenths
0.079 has 0 tenths
Therefore, 0.6 is the largest. | | | |
| 7. | Each number in the pattern below is formed by removing 1 digit from the number above it. | 5 7 8 9 6
The tens digit is removed from the number directly above
5 7 8 6
The tens digit is removed from the number directly above
Therefore, the next number in the pattern should be obtained by removing the ‘tens digit’ from the number directly above, to get 56. | | | |
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| 8. | What FRACTION of the entire shape below is shaded? | The entire shape is composed of shaded and un-shaded equilateral triangles.
The total number of triangles, both shaded and un-shaded, in the shape is 18
The number of shaded triangles is 5
The fraction of the shape that is shown shaded
\[
\frac{\text{Number of shaded triangles}}{\text{Total number of triangles}} = \frac{5}{18}
\]
Answer: \(\frac{5}{18} \) |
| 9. | How many centimetres LONGER is John’s pencil than Jeff’s pencil? | John’s pencil measures 4.5 cm.
Jeff’s pencil measures 2 cm.
John’s pencil is \((4.5 - 2)\) cm = 2.5 cm longer than Jeff’s pencil.
Answer: 2.5 cm |
| 10. | The length of the cuboid below is 10 cm. The area of the shaded face is 25 cm\(^2\). Calculate the volume of the cuboid. | Volume of the cuboid
\[
= \text{Area of shaded face} \times \text{Length}
\]
\[
= (25 \times 10) \text{ cm}^3
\]
\[
= 250 \text{ cm}^3
\]
Answer: 250 cm\(^3\) |
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| 11. | The cost of a football and a cricket ball are shown below: | **Answer:** $126.50

<table>
<thead>
<tr>
<th>Football</th>
<th>Cricket ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>$199.00</td>
<td>$72.50</td>
</tr>
</tbody>
</table>

How much MORE does the football cost than the cricket ball?

The football costs $199.00
The cricket ball costs $72.50
The football costs more than the cricket ball.

The football costs ($199.00 - $72.50) more than the cricket ball.

$199.00 – $ 72.50 = $126.50

Hence, the football costs $126.50 more than the cricket ball.

| 12. | Kyle started a test at 9:45 a.m. and finished at 11:30 a.m. How long did he take to complete the test? | Finish time on test = 11:30 a.m. Start time = 9:45 a.m. Time taken to complete the test is found by subtraction.

<table>
<thead>
<tr>
<th>Hr</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

$1 hr + 30 min = 90 min$

$1 - 9 = 45$

Answer: 1 hour 45 minutes

| 13. | The large cube below is built with small 1 cm³ blocks. | Each small cube has a volume of 1 cm³. The large cube has 4 small cubes along its length, 4 along its width and 4 along its height.

Volume of the large cube $= (4 \times 4 \times 4) \text{ cm}^3$

$= 64 \text{ cm}^3$

What is the volume of the cube?

Answer: 64 cm³
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>A piece of paper in the shape of a circle has a diameter of 28 cm. The paper is folded equally 2 times to form the shape below. What is the length of the side a? Answer: 14 cm</td>
<td>The original circle has a diameter of 28 cm as shown: When folded once, the paper becomes semi-circular: When folded a second time, the paper becomes a quarter circle, with radius, a, The radius of a circle is one half of the diameter The diameter of the circle = 28 cm The radius of the circle = $28 \div 2 = 14$ Length of a = 14 cm</td>
</tr>
<tr>
<td>15.</td>
<td>The scale below is balanced. EACH orange weighs 120 g. What is the weight of the pineapple? Answer: 840 g</td>
<td>The scale is balanced with 9 oranges on one side and 2 oranges and 1 pineapple on the other side. If we remove 2 oranges from both sides of the scale, it will still be balanced. Therefore, 7 oranges are equal in weight to 1 pineapple. So, 1 pineapple weighs the same as the total weight of 7 oranges. $= 7 \times 120 , g$ $= 840 , g$</td>
</tr>
<tr>
<td>No.</td>
<td>TEST ITEMS</td>
<td>WORKING COLUMN</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>16.</td>
<td>The diagram below shows a circle with centre, O.</td>
<td>![Diagram of a circle with centre O and line XY]</td>
</tr>
</tbody>
</table>

Identify the line of symmetry shown in the circle.

Answer: XY

Since O is the centre of the circle, and XY passes through O, then XY is a diameter. When a circle is folded along a diameter both parts will overlap exactly.

Hence XY is a line of symmetry.

| 17. | A solid with a square base is shown below. | ![Diagram of a pyramid with square base and dimensions 3 cm and 6 cm] |

How many edges measure 3 cm?

Answer: 4 edges

Only the four sides or edges of the square base would measure 3 cm.
18. What is the size of the LARGER angle formed between the hands on the clock face shown below?

![Clock Image](clock.png)

Answer: 240 degrees

1 complete revolution = 360°.
As the hand rotates from one number to the next, it turns through 12 equal angles.
Size of each angle = \(\frac{360°}{12} = 30° \).

The larger angle, shown above is made up of 8 equal angles of 30°.
Therefore, the size of the larger angle between the hands of the clock,
\(8 \times 30° = 240° \).

19. The pictograph below shows the number of houses on three streets in a village.

<table>
<thead>
<tr>
<th>Streets</th>
<th>Number of Houses</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>[House Icon] [House Icon]</td>
</tr>
<tr>
<td>Second</td>
<td>[House Icon] [House Icon] [House Icon] [House Icon] [House Icon]</td>
</tr>
<tr>
<td>Third</td>
<td>[House Icon] [House Icon] [House Icon]</td>
</tr>
</tbody>
</table>

Calculate the TOTAL number of houses on the three streets.

Answer: 65 houses

Since the single picture of a house indicates 5 houses:
On the first street there are 3 x 5 = 15 houses
On the second street there are 6 x 5 = 30 houses
On the third street there are 4 x 5 = 20 houses
Total number of houses on all three streets = (15 + 30 + 20) houses = 65 houses

OR

Total number of house pictures = 13
1 picture represents 5 houses
Therefore, number of houses = 13 x 5 = 65 houses
20. The pie chart below represents the types of books that Jim reads in a month.

If Jim reads 12 comic books, how many books does he read ALTOGETHER?

Answer: 48 books
Section II

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Mr. Chin’s supermarket has 15 rows of canned peas. Each row has 25 cans. Calculate the TOTAL number of cans of peas in the supermarket.</td>
<td>Number of rows of peas = 15
Number of cans per row = 25
Total number of cans = Number of rows \times Number of cans per row = 15 \times 25 = 375</td>
</tr>
<tr>
<td>22.</td>
<td>Four fractions are given below. $\frac{1}{3}$, $\frac{1}{4}$, $\frac{5}{6}$, $\frac{5}{12}$ Which THREE of these fractions when added result in a whole number?</td>
<td>The four given fractions are: $\frac{1}{3}$, $\frac{1}{4}$, $\frac{5}{6}$, $\frac{5}{12}$.
Let us consider the denominators of each fraction, these are 3, 4, 6 and 12. A common denominator is 12. If we express each fraction in twelfths it is easy to compare them. We take $\frac{1}{3}$ and express it as $\frac{4}{12}$. Then repeat the process for the others. Similarly, $\frac{1}{4} = \frac{3}{12}$ (\times 3) and $\frac{5}{6} = \frac{10}{12}$ (\times 2) So, the original fractions $\frac{1}{3}$, $\frac{1}{4}$, $\frac{5}{6}$, $\frac{5}{12}$ can be expressed as $\frac{4}{12}$, $\frac{3}{12}$, $\frac{10}{12}$, $\frac{5}{12}$. To make up one whole we choose: $\frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{12}{12} = 1$</td>
</tr>
<tr>
<td>No.</td>
<td>TEST ITEMS</td>
<td>WORKING COLUMN</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 23. | A class is building 6 model houses with lollipop sticks. Each house requires 879 lollipop sticks. Lollipop sticks are sold in packs of 100. How many packs of sticks are needed to build these houses? | Number of sticks required per house = 879
Number of houses being built = 6
Number of sticks required
= 879 \times 6 = 5274
The number of packs to be bought
= 5274 \div 100
= 52 and remainder 74
Number of packs required is 52 full packs and 74 sticks from a 53rd pack.
Number of packs of sticks required = 53 |

Answer: 53 packs

| 24. | A class has 40 students. If 16 students are boys. What PERCENTAGE of the class are girls? | Total number of students in class = 60
The number of girls
= Total number of students – Number of boys
= 40 – 16
= 24
Percent of girls in the class:
= \frac{\text{Number of girls}}{\text{Total number of students}} \times 100
= \frac{24}{40} \times 100
= 60\%

OR
The percent of boys in the class
= \frac{\text{Number of boys}}{\text{Total number of students}} \times 100
= \frac{16}{40} \times 100
= 40\%
Hence the percentage that is girls
= (100 – 40) = 60\% |

Answer: 60\%
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>The diagram below shows two routes that Moe can walk to get from school to home.</td>
<td>From school to home by Route $A = 2\frac{2}{3}$ km $\frac{4}{5}$ km. Route B is longer.</td>
</tr>
<tr>
<td></td>
<td>How much longer is Route B than Route A?</td>
<td>Route B is longer by $\left(\frac{4}{5} - 2\frac{2}{3}\right)$ km</td>
</tr>
<tr>
<td></td>
<td>Answer: $1\frac{2}{15}$ km</td>
<td>$= \frac{4}{5} - 2\frac{2}{3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 3 - 2 + \frac{12}{15} - \frac{10}{15}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \frac{2}{15}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Route B is $1\frac{2}{15}$ km longer than Route A.</td>
</tr>
<tr>
<td>26.</td>
<td>Mary has $40.00. One half $\left(\frac{1}{2}\right)$ of Mary’s money is equal to $\frac{2}{3}$ of Susie’s money.</td>
<td>a) Mary has $40.00 $\frac{1}{2}$ of Mary’s money $= \frac{1}{2} \times 40.00$ $= 20.00$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two thirds of Susie’s money $= 20.00$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One third of Susie’s money $= 10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three thirds of Susie’s money $= 10 \times 3$ $= 30$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) $\frac{3}{8}$ of Mary’s money:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \frac{3}{8} \times 40.00$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \frac{3}{5} \times 40.00$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 15.00$</td>
</tr>
<tr>
<td>No.</td>
<td>TEST ITEMS</td>
<td>WORKING COLUMN</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 27. | In a town of 3000 people, 40% are children. 70% of the children are boys, how many girls are there in the town? | The population of the town = 3000 40% of the population are children
Number of children = 40% of 3000
\[\frac{40}{100} \times 3000 = 1200 \]
70% of the children are boys. The percentage of the children that are girls
\[= (100 - 70)\% \]
\[= 30\% \]
The number of girls = 30% of 1200
\[\frac{30}{100} \times 1200 = 360 \text{ girls} \]
OR
We may find the number of boys as 70% of 1200
\[\frac{70}{100} \times 1200 = 840 \]
Number of girls
\[= \text{Number of children} - \text{Number of boys} \]
\[= 1200 - 840 \]
\[= 360 \text{ girls} \] |
No. | TEST ITEMS | WORKING COLUMN | Do Not Write Here
---|------------|----------------|-----------------
28. | A library has 1 200 books. Of these, \(\frac{1}{4} \) are magazines and \(\frac{2}{5} \) are story books. The remainder is textbooks. | Number of books in the library = 1200
\(\frac{1}{4} \) of the books are magazines
a) Number of magazines
\(\frac{1}{4} \times 1200 \)
= 300 magazines
b) \(\frac{2}{5} \) of the books are story books
Number of story books
\(\frac{2}{5} \times 1200 \)
= 480 story books
Number of magazines + Number of story books = 300 + 480 = 780
Number of text books
= 1200 – 780
= 420 text books | KC | AT | PS
---|------------|----------------|---|---|---

Answer: 300 magazines
Answer: 420 text books

OR

Total fraction that comprises magazines and story books only
\[\frac{1}{4} + \frac{2}{5} = \frac{5}{20} + \frac{8}{20} = \frac{13}{20} \]
Fraction that comprises text books
\[1 - \frac{13}{20} = \frac{7}{20} \]
Number of text books
\[\frac{7}{20} \times 1200 \]
= 420 text books
29. At a party of 20 children each drank 250 millilitres (ml) of lemonade. How many LITRES of lemonade did they drink ALTOGETHER?

Answer: 5 litres

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.</td>
<td>At a party of 20 children each drank 250 millilitres (ml) of lemonade. How many LITRES of lemonade did they drink ALTOGETHER?</td>
</tr>
</tbody>
</table>

20 children each drank 250 ml of lemonade.
Together they drank
\[250 \times 20 = 5000 \text{ ml}\]

1000 ml = 1 litre
So 5000 ml
\[= \frac{5000}{1000} = 5 \text{ litres}\]

OR

Each child drank \[\frac{250}{1000} = \frac{1}{4}\text{ l}\]
20 children drank \[20 \times \frac{1}{4} = 5l\]

30. SALE: Buy 1 pair of shoes and get 50% off the second pair

Jenny bought two pairs of the shoes shown above at the sale. How much did she pay for BOTH pairs?

Answer: $300

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>SALE: Buy 1 pair of shoes and get 50% off the second pair</td>
</tr>
</tbody>
</table>

Cost of 1st pair of shoes = $200
The shoes are the same and so the price of the second pair would be the same, before the discount.
The 2nd pair of shoes will now cost 50% of $200
\[= \frac{50}{100} \times 200 = $100\]

Both pairs will cost a total of $200 + $100 = $300
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
<th>Do Not Write Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>A book has 60 pages. Michael reads 3 pages in 2 minutes. How long will it take him to finish the book?</td>
<td>Michael reads 3 pages in 2 minutes. Since Michael read 60 pages, so he would have read $60 \div 3 = 20$ sets of 3 pages. Every 3 pages takes 2 minutes. 20 sets of 3 pages will take 20×2 minutes. Michael will read 60 pages in 40 minutes</td>
<td>KC AT PS</td>
</tr>
<tr>
<td>32.</td>
<td>The diagram below shows the cost of three stuffed toys.</td>
<td>a) Cost of 2 Tiggers @ $40.00 each $\quad = 40.00 \times 2 = 80.00$ Cost of 1 Pooh Bear $\quad = 45.00$ Total cost of 2 Tiggers and 1 Pooh Bear $\quad = 80.00 + 45.00 = 125.00$ b) Grandma has $200. After buying 2 Tiggers and 1 Pooh Bear, Grandma will have $200 - 125 = 75$ remaining. Now, 2 piglets cost $\quad = 30 + 30 = 60$ 3 piglets cost$\quad = 30 + 30 + 30 = 90$ With 75, Grandama can purchase only 2 piglets.</td>
<td>POOH BEAR TIGGER PIGLET $\quad 45.00$ $\quad 40.00$ $\quad 30.00$ Grandma has $200. She buys stuffed toys for her grandchildren. a) How much does Grandma pay for 2 Tiggers and 1 Pooh Bear? Answer: 125.00 b) How many Piglets can she purchase with the REMAINING money? Answer: 2 piglets</td>
</tr>
<tr>
<td>No.</td>
<td>TEST ITEMS</td>
<td>WORKING COLUMN</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 33. | A square and a rectangle are shown below. The perimeter of the square is twice the perimeter of the rectangle. | a) Perimeter of a rectangle
= 2 (Length + Width)
= 2(8 + 4) cm
= 24 cm
Perimeter of the square
= 2 × Perimeter of rectangle
= 2 × 24 cm
= 48 cm

b) Perimeter of a square
= 4 × length of side
Perimeter of the square = 48 cm
Length of side of square = \(\frac{48 \text{ cm}}{4} \)
= 12 cm |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>KC</th>
<th>AT</th>
<th>PS</th>
</tr>
</thead>
</table>
| 34. | The total mass of mangoes and oranges in a bag is 2 kg. Each orange has a mass of 50 g and each mango has a mass of 200 g. the bag contains 6 mangoes. | a) Total mass of 6 mangoes, each of mass
200 g
= 200 × 6 g
= 1200 g

b) Total mass of mangoes and oranges
= 2 kg
= 2 × 1000 g
[1 kg = 1000 g]
= 2000 g
The mass of oranges
= Total mass – mass of mangoes
= 2000 – 1200 g
= 800 g
Each orange has a mass of 50 g.
Number of oranges
= \(\frac{\text{Total mass of oranges}}{\text{Mass of 1 orange}} \)
= \(\frac{800 \text{ g}}{50 \text{ g}} \)
= 16 oranges |

| | | | | | | |
35. In Mr. Jerry’s yard there is a pool with a lawn around it. The yard is 9 metres long and 8 metres wide as shown below.

![Diagram of yard with pool and lawn]

a) Calculate the area of the entire yard.

Answer: 72 m²

b) The area of the pool is \(\frac{1}{3} \) of the area of the yard. Calculate the area of the lawn.

Answer: 48 m²

\[\text{Area of the entire yard} = \text{Area of the rectangle} = \text{Length} \times \text{Breadth} = 9 \times 8 \, \text{m}^2 = 72 \, \text{m}^2 \]

\[\text{Area of pool} = \frac{1}{3} \text{ area of yard} = 72 \, \text{m}^2 / 3 = 24 \, \text{m}^2 \]

\[\text{Area of lawn} = \text{Area of entire yard} - \text{Area of pool} = 72 - 24 \, \text{m}^2 = 48 \, \text{m}^2 \]

OR

Fraction of yard that is lawn

\[= 1 - \frac{1}{3} = \frac{2}{3} \]

One third of the area of the yard = 24 m²
Two thirds the area of the yard = 48 m²
Area of the lawn = 48 m²
36. The grid below is made up of 1 cm squares. Draw an isosceles triangle with a HEIGHT of 4 cm on the grid.

Answer:

[Other solutions are shown in the working column]

The diagrams below each show an isosceles triangle of height 4 cm. The length of the base varies.
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
<th>Do Not Write Here</th>
</tr>
</thead>
</table>
| 37. | Study the pattern below. | a) If Figure 1 is flipped about a vertical line, it will appear as Figure 2. Similarly, if Figure 2 is flipped about a vertical line it will appear as Figure 3 and so on. The movement is a reflection in a vertical line.
 b) The pattern is such that;
 Figures 1, 3 and 5 will be the same
 Figures 2, 4 and 6 will be the same
 The shape that should appear in Position 6 is
 OR | | | |
38. The flag below was moved from Position A to Position B in the direction of the arrow.

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a) What FRACTION of a complete turn was made?</td>
</tr>
</tbody>
</table>
| | a) What FRACTION of a complete turn was made? | 1 complete turn = 360°
<p>| | 1/4 turn = 90° | The arrow shows the angle turned, and the fraction of the complete turn is: |
| | b) Through how many degrees was the flag turned? | = 1 - 1/4 = 3/4 |
| | b) Through how many degrees was the flag turned? | b) The angle through which the flag turns |
| | Answer: 270° | = 3/4 \times 360° |
| | c) The flag is moved 180° from Position B, draw its NEW position on the diagram above. | = 270° |
| | c) The flag is moved (rotated) through 180°. Its new position is shown in the diagram |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| 39. | The diagram below shows a paper toy in the shape of a cube. The base is a square. | a) How many faces does the paper toy have?
Answer: 6 faces
b) Draw the net of the paper toy. |
| | ![Diagram of a cube] | ![Net of a cube]
The paper toy is in the shape of a cube and has 6 faces.
b) Several nets of a cube can be drawn. There are 11 in all. Four of these are shown below. |
40. The table below shows Pat’s scores on four of her class tests.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Studies</td>
<td>77</td>
</tr>
<tr>
<td>Art</td>
<td>74</td>
</tr>
<tr>
<td>Science</td>
<td>81</td>
</tr>
<tr>
<td>Maths</td>
<td>78</td>
</tr>
</tbody>
</table>

Her average score on all five tests is 80. How much did she score in English?

Answer: 90 marks

Pat’s average score on 5 tests = 80

Pat’s total marks on all 5 tests
= Average score × Number of tests
= 80×5
= 400 marks

Total scores on the 4 subjects in the given table
= 77 + 74 + 81 + 78
= 310 marks

Pat’s score in English
= Total score on all five subjects – total score on the four subjects given in the table
= 400 – 310
= 90 marks
41. a) Street lights along a straight road are 20 m apart. What is the distance between the first street light and the tenth street light?

Answer: 180 m

b) A gardener decides to plant palm trees 10 m apart around a rectangular park. The park is 100 m long and 60 m wide. The diagram below shows where he digs the first and last holes for the first and last palm trees.

How many palm trees does he plant ALTOGETHER?

Answer: 27 trees

[Note: if the counting were done in three stages, from A to B, then B to C and then C to D, care should be taken so that trees at points B and C are not counted twice.]
42. The diagram below shows the number of points awarded for striking the colours on a dartboard.

- Blue (10 points)
- Green (20 points)
- Red (30 points)

a) Tommy threw darts and struck green twice and red once. What was his TOTAL score?

Answer: 70 points

b) Harry scored 100 points by striking each colour at least once. Complete the score sheet below to show how he scored the 100 points.

<table>
<thead>
<tr>
<th>Colour</th>
<th>No. of times</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Answer:

<table>
<thead>
<tr>
<th>Colour</th>
<th>No. of times</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

a) 2 green strikes at 20 points each, scores $20 \times 2 = 40$ points
 1 red strike at 30 points = 30 points
 Total points scored by Tommy
 $= 40 + 30$
 $= 70$ points

b) Harry scores 100 points and strikes each colour at least once. He also scored 60 of these points by striking red twice.
 Remaining points $= 100 - 60 = 40$
 He scored 40 points with at least one blue and one green:
 1 blue + 1 green
 $= 10 + 20$
 $= 30$ points
 To score 40 points he needs to get 10 more points, so he must strike another blue.
 2 blue + 1 green
 $= 2(20) + 20$
 $= 40$ points
 The table is complete with
 2 blue strikes $= 10 \times 2 = 20$ points
 1 green strike $= 20 \times 1 = 20$ points
 2 red strikes $= 30 \times 2 = 60$ points
 Total points obtained $= 100$
Ken and Rob each use six equilateral triangles to make the two shapes below. The triangles have sides that are 7 cm long.

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| 43. | Ken and Rob each use six equilateral triangles to make the two shapes below. The triangles have sides that are 7 cm long. The triangles have sides that are 7 cm long. | a) What is the perimeter of Ken’s shape?

Answer: 42 cm

b) How much longer is the perimeter of Rob’s shape than Ken’s shape?

Answer: 14 cm |

Ken’s shape
- **a)** Ken’s shape is a six sided polygon of equal sides, each = 7 cm
 - Perimeter of Ken’s shape
 - \(= (6 \times 7) \text{ cm} \)
 - \(= 42 \text{ cm} \)

Rob’s shape
- **b)** Rob’s shape is enclosed by 8 sides of six triangles. Hence, the perimeter of Rob’s shape
 - \(= (8 \times 7) \text{ cm} \)
 - \(= 56 \text{ cm} \)
 - Rob’s shape is longer than Ken’s shape by the difference of their perimeters.
 - Rob’s shape is \((56 - 42) = 14 \text{ cm}\) longer than Ken’s shape.
<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| 44. | Mr. John bought the television set shown below. | a) Discount is 25% off the marked price of $2000
\[\frac{25}{100} \times 2000 = 500 \]
\[\text{Answer: } 500 \]
b) Selling price after discount
\[= 2000 - 500 \]
\[= 1500 \]
\[\text{Answer: } 1500 \]
c) VAT is 15% of the price after discount.
\[= \frac{15}{100} \times 1500 \]
\[= 225 \]
\[\text{Answer: } 225 \]
d) Final price of the television
\[= 1500 + 225 \]
\[= 1725 \]
\[\text{Answer: } 1725 \]

<table>
<thead>
<tr>
<th>KC</th>
<th>AT</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
45. The diagram below shows a triangular prism.

![Triangular Prism Diagram](image)

TEST ITEMS

a) How many faces of the prism are:

 i. Triangular?

 Answer: 2 faces

 ii. Rectangular?

 Answer: 3 faces

b) How many edges have a length of 45 cm?

Answer: 3 edges

c) The volume of the prism is 90 cm\(^3\). It is cut into identical prisms each of volume 10 cm\(^3\).

What is the length of EACH of the smaller prisms?

Answer: 5 cm

![Diagram of Triangular Faces](image)

(i) 2 triangular faces

![Diagram of Rectangular Faces](image)

(ii) 3 rectangular faces

b) 3 edges have a length of 45 cm.

![Diagram of 45 cm Length](image)

Length of 45 cm

c) Volume of prism = 90 cm\(^3\)

Each cut prism has a volume of 10 cm\(^3\).

Number of prisms cut = \(\frac{90 \text{ cm}^3}{10 \text{ cm}^3}\) = 9

Total length of all 9 prisms = Length of the original uncut prism = 45 cm

Length of each of the prisms cut = \(\frac{45 \text{ cm}}{9}\) = 5 cm
46. The bar graph below shows the ages of four cousins.

![Bar graph showing ages of four cousins](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEMS</th>
<th>WORKING COLUMN</th>
</tr>
</thead>
</table>
| | The bar graph below shows the ages of four cousins. | a) From the bar chart we read:
The age of Stacy = 6 years
The age of Lauren = 8 years
The age of Jessica = 6 years
The age of Roshan = 12 years
Total ages = 6 + 8 + 6 + 12
= 32 years
Mean age = \(\frac{\text{Total age}}{\text{Number of children}} \)
= \(\frac{32 \text{ years}}{4} \)
= 8 years

b) Lauren is 8 years old and Roshan is 12 years old.
That is, Roshan is 12 – 8 = 4 years older than Lauren.
If on May 2006, Lauren was 6 years old, then she was born in May 2000.
Roshan was born 4 years before Lauren.
Roshan was born in the year
2000 – 4
= 1996 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Do Not Write Here</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KC</td>
</tr>
</tbody>
</table>

Answer: 8 years

b) Both Lauren and Roshan were born in May. In May 2006 Lauren was six years old. In what year was Roshan born?

Answer: 1996