5: ROOTS OF A QUADRATIC EQUATION

The general form of a quadratic equation

We have grown accustomed to recognising a quadratic equation in the form \(ax^2 + bx + c = 0 \). In this section, we will be introduced to a new format for such a quadratic equation. This format would express the quadratic in the form of its roots. It is a convenient form to know and it allows us the flexibility to switch from this form to the standard form.

Roots of a quadratic equation (\(\alpha \text{ and } \beta \))

A quadratic equation in \(x \) is of the general form \(ax^2 + bx + c = 0 \), where \(a, b \) and \(c \) are constants.

If we divide each term by \(a \), then the quadratic equation can be expressed in an equivalent form with the coefficient of \(x^2 \) is equal to one as shown below.

\[
ax^2 + bx + c = 0
\]
\[
\frac{x^2}{a} + \frac{b}{a}x + \frac{c}{a} = 0 \quad \text{(1)}
\]

Now consider \(\alpha \) and \(\beta \) as the roots of the quadratic.

We can now rewrite the quadratic in the form:

\[
(x - \alpha)(x - \beta) = 0.
\]

By expanding we get,

\[
x^2 - (\alpha + \beta)x + \alpha\beta = 0. \quad \text{(2)}
\]

Equation (2) is an equivalent form of equation (1). In fact, any quadratic equation, in \(x \), can always be expressed in the form of its roots.

We can replace \((\alpha + \beta)\) by the ‘sum of the roots’ and \(\alpha\beta\) by the ‘product of the roots’, to obtain the following form for a quadratic equation.

\[
x^2 - \text{(sum of roots)}x + \text{product of roots} = 0
\]

Sum and product of the roots of a quadratic equation

Equations (1) and (2) above are two equivalent forms of a quadratic equation.

Equating both forms we get:

\[
x^2 + \frac{b}{a}x + \frac{c}{a} = x^2 - (\alpha + \beta)x + \alpha\beta
\]

When we equate coefficients, the following is obtained:

\[
\alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha\beta = \frac{c}{a}.
\]

We can now make a general statement about the roots of a quadratic.

For the quadratic equation \(ax^2 + bx + c = 0 \),
the sum of the roots \(\frac{-b}{a} \) and
the product of the roots \(\frac{c}{a} \).

Example 1

If \(\alpha \) and \(\beta \) are the roots of the quadratic equation \(x^2 - 3x + 2 = 0 \), determine

(i) the sum of the roots and
(ii) the product of the roots.

Solution

In the quadratic equation \(x^2 - 3x + 2 = 0 \)
\(a = 1, b = -3 \) and \(c = 2 \).

(i) The sum of the roots, \(\alpha + \beta = \frac{-(-3)}{1} = 3 \)

(ii) The product of the roots, \(\alpha\beta = \frac{2}{1} = 2 \).

Example 2

The quadratic equation \(x^2 - 4x + 3 = 0 \) has roots \(\alpha \) and \(\beta \).

a) Obtain the equation whose roots are \(\alpha + 1 \) and \(\beta + 1 \).

b) Obtain the equation whose roots are \(\alpha^2 \) and \(\beta^2 \).

Solution

If the equation \(x^2 - 4x + 3 = 0 \) has roots \(\alpha \) and \(\beta \),
then \(a = 1, b = -4 \) and \(c = 3 \). Hence,

\(\alpha + \beta = 4 \) and \(\alpha\beta = 3 \)

To obtain an equation whose roots are \(\alpha + 1 \) and
\[\beta + 1, \text{ we can substitute these roots in the following equation:} \]
\[x^2 - (\text{sum of roots}) x + \text{product of roots} = 0 \]
\[x^2 - [(\alpha + 1) + (\beta + 1)]x + [(\alpha + 1)(\beta + 1) = 0 \]
\[x^2 - [(\alpha + \beta + 2)]x + [\alpha \beta + (\alpha + \beta) + 1] = 0 \]
\[x^2 - (4 + 2)x + (3 + 4 + 1) = 0 \]
\[x^2 - 6x + 8 = 0 \]

This is the required equation.

Part b) To obtain an equation whose roots are \(\alpha \) and \(\beta \), we substitute these roots in:
\[x^2 - (\alpha^2 + \beta^2) x + (\alpha^2 \times \beta^2) = 0 \]
\[x^2 - (\alpha^2 + \beta^2) x + (\alpha^2 \beta^2) = 0 \]

[Recall: \((\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta\)]
\[x^2 - (\alpha^2 + \beta^2 - 2\alpha\beta)x + (\alpha^2 \beta^2) = 0 \]
\[x^2 - (4^2 - 2(3)) x + (3)^2 = 0 \]
\[x^2 - 10x + 9 = 0 \]

This is the required equation.

Example 3

Given that \(x^2 + (k - 5)x - k = 0 \) has real roots which differ by 4, determine

i. the value of each root

ii. the value of \(k \).

Solution

If we let \(\alpha \) be the smaller real root, then the other will be \((\alpha + 4)\).

Then the sum of the roots is : \(\alpha + (\alpha + 4) = 2\alpha + 4 \)
The product of the roots is \(\alpha(\alpha+4) \).

From the given equation \(x^2 + (k - 5)x - k = 0 \),
The sum of the roots is: \(- (k - 5)\)
The product of the roots is: \(-k\)

Equating coefficients, we have:

<table>
<thead>
<tr>
<th>Sum of roots</th>
<th>Product of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\alpha + 4 = -(k - 5))</td>
<td>(\alpha(\alpha+4) = -k)</td>
</tr>
<tr>
<td>(2\alpha + 4 = -k + 5)</td>
<td>(k = -\alpha(\alpha + 4))</td>
</tr>
<tr>
<td>(k = 1 - 2\alpha)</td>
<td>(\alpha = 1 - 2 \alpha)</td>
</tr>
</tbody>
</table>

Equating equations (1) and (2) to eliminate \(k \), we have:

\[-\alpha^2 - 4 \alpha = 1 - 2 \alpha \]
\[\alpha^2 + 2 \alpha + 1 = 0 \]
\[(\alpha + 1)(\alpha + 1) = 0 \]
\[\alpha = -1 \]

The value of \(k \): \(k = 1 - 2\alpha = 1 - 2(-1) = 3 \)
\[\therefore \text{Roots are} -1 \text{ and } -1 + 4 \]
The roots are -1 and 3.

Alternative Method

If we let \(\alpha \) be the smaller real root, then the other will be \((\alpha + 4)\).

Hence the quadratic equation may be expressed as
\[(x - \alpha)[x - (\alpha + 4)] = 0 \]
\[\alpha x - ax + \alpha^2 - 4x + 4\alpha = 0 \]
\[x^2 + (-2\alpha - 4)x + (\alpha^2 + 4\alpha) = 0 \]

Equating coefficient of \(x \), we obtain
\[-2\alpha - 4 = k - 5 \]
\[-2\alpha - 4 = k - 5 \]
\[k = 1 - 2\alpha \]
\[\therefore \alpha = \frac{1-k}{2} \]

Equating constant terms, we obtain
\[\alpha^2 + 4\alpha = -k \]
\[\therefore \left(\frac{1-k}{2}\right)^2 + 4\left(\frac{1-k}{2}\right) = -k \]
\[1 - 2k + k^2 = 2 - 2k + k = 0 \]
\[1 - 2k + k^2 + 8 - 8k + 4k = 0 \]
\[k^2 - 6k + 9 = 0 \]
\[(k - 3)^2 = 0 \]
\[k = 3 \]

When, \(k = 3 \), \(\alpha = \frac{1-3}{2} = -1 \)
\[\therefore \text{Roots are} -1 \text{ and } -1 + 4 \]
The roots are -1 and 3.