Sustainability In Asphalt Pavements

Southwest Ohio Asphalt Pavement Technical Seminar

November 29, 2012

Sustainable Concepts

- Sustainable Technologies Should Be:
 - Economical
 - Resource-responsible
 - Long-life Solutions
 - Environmentally Sound
 - Increase Performance and Value
- 3R's: Reduce, Recycle, Re-use

3R's: Reduce

- Asphalt Pavements Reduce Demand on Virgin Raw Materials:
 - Reclaimed Asphalt Pavement (RAP)
 - Reclaimed Asphalt Shingles (RAS)
 - Ground Tire Rubber (GTR)
 - Perpetual Pavement Design for Long-life Performance.
- Reduce Energy Consumption with Warm Mix (WMA) Asphalt

3R's: Recycle

- Asphalt Pavement: Use of RAP Reuses & Rejuvenates Old Asphalt Pavement and Avoids Placing Hundreds of Thousands of Tons of Waste Material Annually in Landfills.
- Shingles: Tear-offs from Old Roofs or Manufacturer Waste Used as a Component of Asphalt Pavements.
- Scrap Tires: Formerly Destined for Landfills Incorporated into Asphalt Pavements Improving Binder Properties and Material Performance.

Recycling Rates by Category

- 64% Scrap Steel
- 60% Aluminum Cans
- 56% Newspapers
- 37% Plastic Soft Drink Bottles
- 31% Glass Beverage Containers
- 23% Magazines
- 90% Asphalt Pavements

3R's: Reuse

- Asphalt Pavements are 100%
 Reusable & Do Not Require Removal
 & Disposal Costs.
- Can be Incorporated Entirely Into New Asphalt Pavements.

Sustainable Attributes of Asphalt Pavements

- Reclaimed Asphalt Pavement (RAP)
- Reclaimed Asphalt Shingles (RAS)
- Ground Tire Rubber
- Bio-Derived Binder Extenders
- Warm Mix Asphalt
- Porous Pavements
- Perpetual Pavement
- Smoothness
- Low Carbon Footprint

Reclaimed Asphalt Pavement (RAP)

- Asphalt is the Most Recycled Material in America Saving More Than \$300 Million Annually.
- 73 Million Tons Reused Annually.
 - Nearly twice as much as paper, glass, aluminum & plastics combined.
- RAP in Landfills:
 - Less Than 10% nationally.
 - -Less Than 1% in Ohio.

RAP Usage in Ohio

- Ohio one of Top 7 states for Reported Average RAP Usage.
- Summary of RAP Usage in Ohio:
 - On Average Each Ton of Asphalt is Comprised of 24% RAP;
 - Approximately 3.4 Million Tons of RAP Used Annually;
 - Estimated Value of \$170 million.

NCAT Reclaimed Asphalt Pavement Publication

- Developed by NCAT & FHWA Recycled Asphalt Pavement Expert Task Group
- Overview of the economic, performance and environmental benefits of RAP
- Available at: www.morerap.us

Reclaimed Asphalt Shingles

- Reclaimed Asphalt Shingles (RAS) is generally of two origins:
 - Manufacturing Waste
 - Roofing Tear-offs

RAS: Background

- 10 Million Tons of Asphalt Shingles Annually Enter Waste Stream
 - 1 Million Tons Manufacturer Waste
 - –9 Million Tons Tear-offs
- 3rd Largest Construction Material Waste

Why use Shingles?

- Economic Benefit
 - Considerable Cost Savings Per Ton of HMA
- Ease of Recycling
 - Shingles Composed of Materials Routinely Used in HMA
- Process Can be Engineered to Provide Asphalt Pavements with Equivalent or Superior Performance.

Ground Tire Rubber (GTR)

- Two Main GTR Applications:
 - Dry Process: Aggregate Replacement
 - Granulated/Ground Rubber is Added with Aggregate During Mixture Process.
 - Substitute for 1%-3% of Aggregate.
 - -Wet Process: Asphalt Rubber (AR)
 - Crumb Rubber is Added to Liquid Asphalt before Mixing at Asphalt Plant.
 - Asphalt Cement Modifier.

GTR Environmental Benefits

- Two-Inch thick Overlay of GTR
 Asphalt Pavement Will Utilize
 Approximately 2,000 Tires Per Lane
 Mile.
- Approximately 10 Million Tires are Annually Recycled in Paving Applications.

NCAT Test Track GTR Research

 NCAT Research on Viability of GTR as Alternate Binder Modifier for Styrene-Butadiene-Styrene (SBS) in Interstate Surface Mixes.


 Constructed Two Test Sections and Monitored Results for Two Years (2009-2011).

Preliminary Research Conclusions

- No Significant Rutting or Cracking.
- GTR Demonstrated Equivalent or Better Performance Compared to SBS Modified Mixture.
- GTR Can be Used as a Polymer Substitute Without Sacrificing Asphalt Mix Performance.

Ohio Asphalt: Summer 2012

Bio-Derived Binder Extenders

- Vegetable Oil Formulations (Soybean, Corn, Sunflower & Canola) in Development as Possible Asphalt Binder Modifiers & Extenders.
- Nu-Vention Solutions, Inc.

- Ohio Company
- BR2: Swine Manure Based Bio-oil to Extend & Improve Asphalt Binder.

Warm Mix Asphalt (WMA)

- General Term for Technologies That Allow Reduced Asphalt Production & Placement Temperatures.
- Reductions of 50° to 100° Fahrenheit

Warm Mix Asphalt (WMA)

Reduced Mixing Temperatures (50°-100° F)

Advantages of WMA (Plant)

- Improves Air Quality Emissions
- Reduces Energy Consumption & Mix Production Cost
- Facilitates the Use of RAP
- Reduced "Carbon Footprint"

Advantages of WMA (Placement)

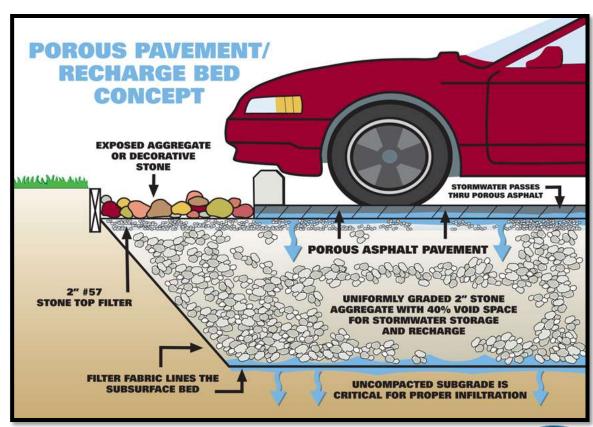
- Improves Worker Environment
 - Reduced Exposure to Fumes/Smoke
- Cool Weather Paving
 - -Extends the Paving Season
- Improved Workability
 - Compaction Aid for "Stiff" Mixes

WMA Technologies

- Additives:
 - Zeolite
 - Sasobit
- Modified Binder:
 - Evotherm
- Foaming
 - Simple and Effective
 - All Manufacturers

WMA in Ohio

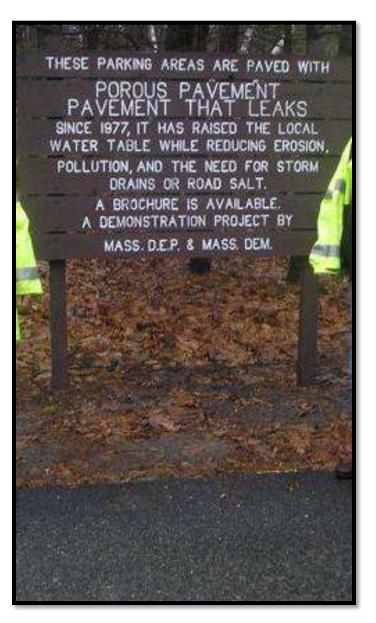
- In 2006: ODOT Began Lab Investigations & Field Trials of WMA.
- In 2008: Use Permissive Under ODOT Specs.
- 2011: 78 out of 151 Asphalt Plants Possess the Capability to Produce WMA


Warm Mix Asphalt in Ohio

Ohio DOT WMA Usage			
Year	Total Tons	WMA Tons	Percent WMA
2006	4,173,618	0	0
2007	4,677,966	0	0
2008	5,130,600	10,430	.2%
2009	4,953,472	148,576	3%
2010	3,573,764	1,071,994	30%
2011	5,000,000	2,800,000	56%

Porous Asphalt

Pavement Structure with Permeable Surface that **Permits** Stormwater to Pass Through Surface for Infiltration and/or Storage in the underlying layer.



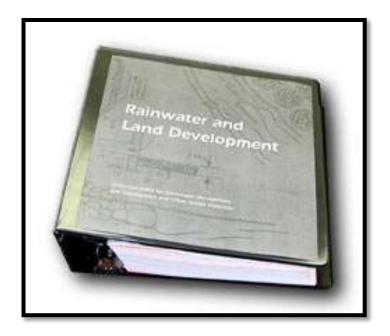
Why Porous Asphalt Pavements?

- Environmental Benefits:
 - Limits Quantity & Improves Quality of Stormwater;
 - Recharges Groundwater;
 - Reduces Amount of Impervious Surfaces.
- Economic Benefits:
 - Reduces/Eliminates Conventional Stormwater Control Facilities & Maximizes Developable Space;
 - Stormwater Regulations & Taxable Outflow.

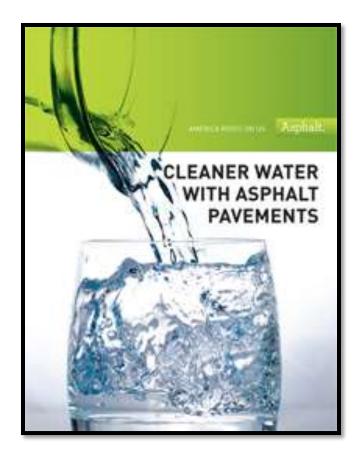
Pavement Longevity

- Walden Pond
 State Reservation,
 Concord, MA.
- Porous Pavement Parking Lot Installed in 1977.
- Still in Use Today.

Other Porous Asphalt Applications: Buckeye Varsity Field The Ohio State University


- 500-seat Field Hockey Stadium
 - Opened 2010.
- Field Construction:
 - Porous AsphaltBase
 - 3/8" Closed-cell Foam Intermediate Layer
 - Astroturf Surface.

ODNR Rainwater & Land Development Manual


- Design, Construction & Maintenance Guidance for Permeable Paving Materials
- Available for Purchase from ODNR or On-line at: http://www.dnr.state.oh.us/tabid/9186/default.aspx

APA Cleaner Water with Asphalt Pavements

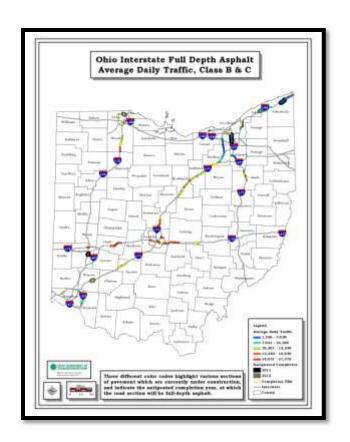
- Written as a Single Source, Scientifically Documented Resource.
- Focuses on the Benefits of Asphalt Pavements for Improved Water Quality, Stormwater Management & the Reduction of Roadside Pollution.
- Available at: www.asphaltroads.org

Perpetual Pavements

Perpetual Pavement Design

- Full-depth Asphalt Pavement Designed To Eliminate Structural Distresses:
 - Bottom Up Fatigue Cracking
 - Structural Rutting
- All Distresses Can be Quickly Remedied from Surface.
- Result in a Structure with 'Perpetual' or 'Long Life' Performance.

Advantages of Perpetual Pavements


- Efficient Design No Overdesign
- Avoid Need for Reconstruction or Rehabilitation
- Reduce Life Cycle Cost
- Reduce Energy Consumption
- Reduce Use of Virgin Materials
- Ease of Maintenance
 - Maintenance Primarily Consists of Crack Filling
 & Minor Resurfacing
 - Night Construction
 - Maintenance of Traffic is Easier

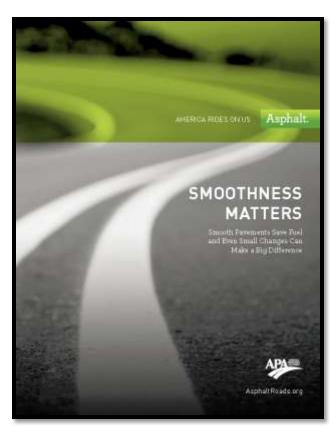
Perpetual Pavements in Ohio

- No Full-depth Asphalt Pavement on Ohio's Interstate System has ever Required Replacement.
 - Earliest Constructed in the Late 1950's.
- Active Research Projects on 3 Major Highways in Ohio
 - I-77 (Stark Co.)
 - U.S. Route 30 (Wayne Co.)
 - U.S. Route 23 (Delaware Co.)
- FPO Study, "Economic Evaluation of Ohio's Flexible and Rigid Interstate Pavements" Available at:

www.flexiblepavements.org

APA Perpetual Pavement Awards

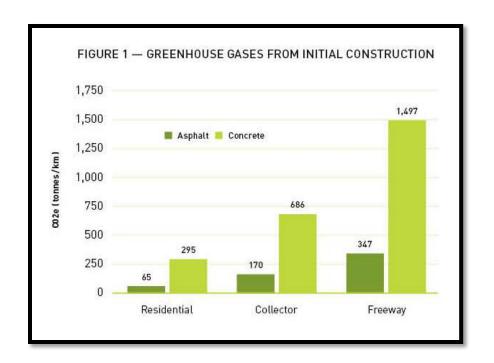
- National Award for Asphalt Pavements:
 - At Least 35 Years Old.
 - No Structural Failures.
 - 13 Year Average
 Resurfacing Interval.
- 80 Pavements Have Received Perpetual Pavement Awards Since 2001.
 - -3 in Ohio.

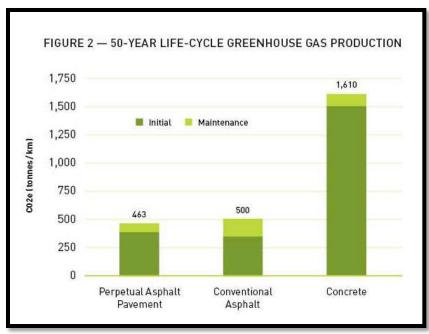


Smoothness in Sustainable Pavement Construction

- Asphalt Pavements are Consistently Smoother Than Other Pavements.
 - Smoother When First Constructed.
 - Smoother Over Life of the Surface.
- Smoothness is Restored with Resurfacing.
- Studies show Smoothness Has Sizeable Impact on Vehicle Energy Use.
- Asphalt is the Smoothest Type of Pavement as Validated by Ohio Department of Transportation Measurements of Asphalt & Concrete Pavements.

APA Smoothness Matters


- Vehicle Fuel Efficiency Improves When Rolling Resistance is Reduced.
- Improving Smoothness is the Greatest Factor in Reducing Rolling Resistance.
- Available as a Free Download at: <u>www.asphaltroads.org</u>



Carbon Footprint

- What is Carbon Footprint?
 - Total amount of Greenhouse Gas Emissions Caused Directly & Indirectly by a . . . product [or material]." Usually expressed in Carbon Dioxide "equivalents" (CO2e).
- Carbon Footprint of Pavements Includes:
 - Raw Materials Extraction & Processing
 - Pavement Manufacturing
 - Pavement Transportation & Placement
 - Pavement Maintenance
- Sustainable Asphalt Technologies that Offset Greenhouse Gas Production:
 - RAP Reduces Acquisition of Virgin Raw Materials
 - WMA Reduces Energy Requirements & CO2

Carbon Footprint of Asphalt Pavements Are Less than 30% of Equivalent Portland Cement Concrete Pavements.

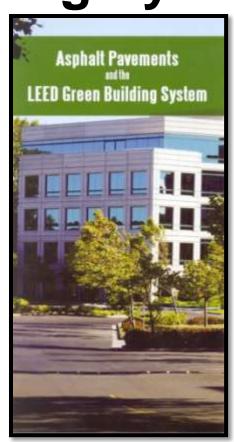
APA Carbon Footprint

- Examines Greenhouse Gas Production of Asphalt & Concrete Pavements.
- Analysis Demonstrates
 Asphalt has the Lowest
 Carbon Footprint for
 Roadway Construction.
 - Initial Construction & 50-year Life Cycle.
- Available as a Free Download at: <u>www.asphaltroads.org</u>

Asphalt Pavements in Sustainable Rating Systems

Leadership in Energy in Environmental Design (LEED)

- Developed by the U.S. Green Building Council, LEED is the Nationally Accepted Benchmark for the Design, Construction & Operation of High Performance Green Buildings.
- LEED Promotes a Whole-building Approach to Sustainability by Recognizing Performance in the Six Categories: Sustainable Sites, Water Efficiency, Energy and Atmosphere, Materials and Resources, Indoor Environmental Quality & Innovation & Design.


How Asphalt Earns LEED Credits

- Sustainable Sites
 - Porous Asphalt to Control Quantity & Improve Quality of Stormwater Runoff.
 - Open-graded Pavements or Reflective Surface to Mitigate Urban Heat Island
- Materials and Resources
 - RAP & RAS
 - Recycling Existing Pavements or Asphalt Shingles in Renovation Projects.
- Innovation & Design
 - Warm Mix Asphalt (Reduced Emissions & Fuel Savings)
 - High-RAP Pavements (20% or Higher)

NAPA Asphalt Pavements and the LEED Green Building System

- Outlines the Technologies
 Which Asphalt Pavements
 Contribute to LEED
 credits.
- Includes a scorecard that can use as a guide to earning LEED credits for asphalt pavements.
- Available for purchase from the NAPA Bookstore

at: www.hotmix.org

Greenroads

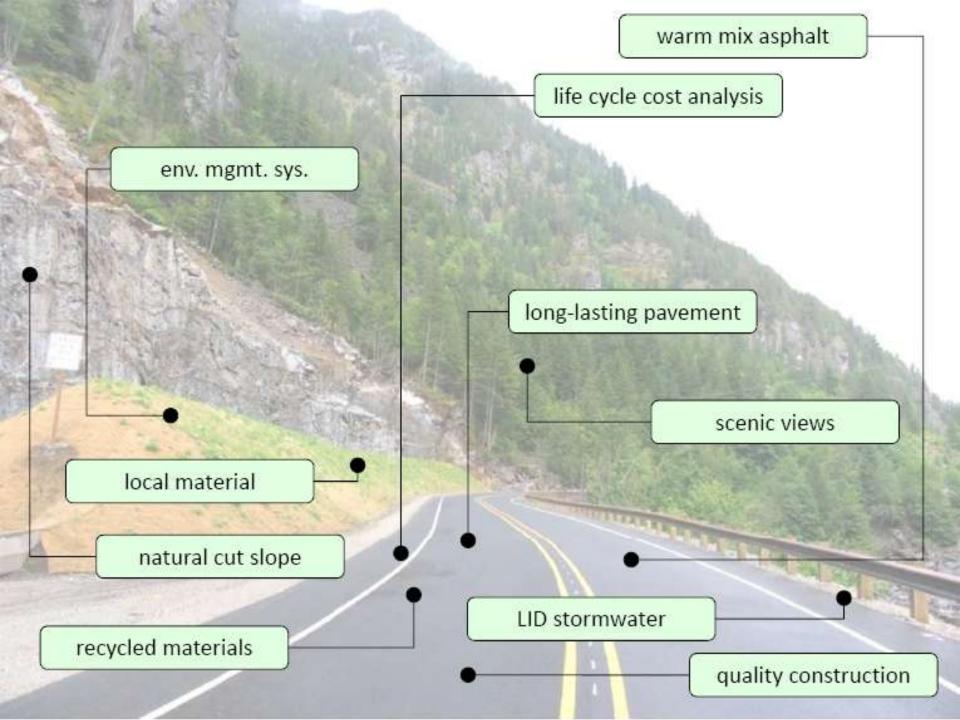
- LEED-like Rating System for Roadway Design & Construction.
- Greenroads Quantify the Sustainable Attributes of a Roadway Project.

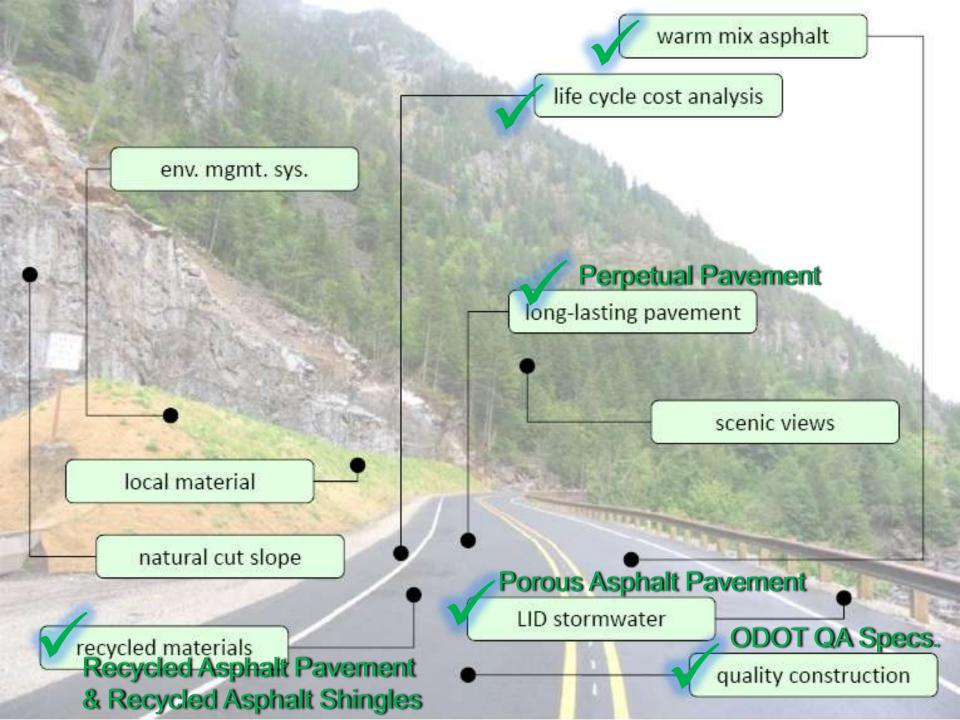
Greenroads Requirements

- 11 Mandatory Requirements that all projects must meet.
- 118 types of Voluntary Credits with varying credit values covering 38 different types of sustainable design and construction approaches.
- A minimum of 32 Voluntary Credits are required.

Mandatory Credit Requirements

Requirement		Description	
PR-1	Environmental Review Process	Complete and environmental review process	
PR-2	Life Cycle Cost Analysis (LCCA)	Perform LCCA for pavement section	
PR-3	Life Cycle Inventory (LCI)	Perform LCI of pavement section with computer tool	
PR-4	Quality Control Plan	Have a formal contractor quality control plan	
PR-5	Noise Mitigation Plan	Have a construction noise mitigation plan	
PR-6	Waste Management Plan	Have a formal plan to divert C&D waste from landfill	
PR-7	Pollution Prevention Plan	Have a TESC/SWPPP	
PR-8	Low-Impact Development (LID)	Feasibility study for LID stormwater management	
PR-9	Pavement Mgmt. System	Have a pavement management system	
PR-10	Site Maintenance Plan	Have a site maintenance plan	
PR-11	Educational Outreach	Publicize sustainability information for project	


Voluntary Credit Requirements


Voluntary Credits				
EW Environment & Water	Stormwater, habitat, vegetation	21		
AE Access & Equity	Modal access, culture, aesthetics, safety	30		
CA Construction Activities	Construction equipment, processes, quality	14		
MR Materials & Resources	Material extraction, processing, transport	23		
PT Pavement Technology	Pavement design, material use, function	20		
	Total Voluntary Credit Points	108		

CC Custom Credits	Write your own credit for approval	10
-------------------	------------------------------------	----

Total Points 118

2010 Street Reconstruction Program City of Upper Arlington, OH

- Construction & Materials Points Obtained through Use of:
 - WMA
 - RAP
 - Full-depth Reclamation
- Greenroads Pilot Project

Cheney Stadium Project City of Tacoma

- Points Obtained through Use of:
 - Porous Asphalt Roadway & Parking Lot
- Achieved Greenroads Silver Certification

Questions?

