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Background

Research Objectives

« Evaluate the longevity and durability of chemically stabilized
subgrade solls

« Examine the modulus or stiffness as determined by DCP
and FWD data.

« Use finite element modeling to determine the level and
nature of stresses and strains on untreated subgrade under
the stabilized subgrade layer.

« Determine how the design of a flexible pavement should be
modified when the subgrade is chemically stabilized.
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Background

Research Objectives

« Compare and contrast the AASHTO 93 procedure to the
procedure recommended by Chou et al (2004).

* Review the mix design properties of chemically stabilized
subgrade solls currently used by ODOT. Conduct an
analysis to determine what thickness and minimum strength
of chemically stabilized layer is necessary for construction
and pavement design purposes.
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Background

Test Sites
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Flexible Pavement Design/Analysis

AASHTO Pavement Design Guide

« 1993 AASHTO Guide for the Design of Pavement
Structures

log,,(W,g) =Zz%X5_+ 936 xlog,,(SN+1)—0.20+ Eobasl L 535 x
log,,(M;) —8.07 -
Where
SN=aDit+a,D;m,+a,Dm,..

and g, is the layer coefficient
typical values:
Asphalt surface course — 0.44
Aggregate Base — 0.14
Aggregate subbase course — 0.11 [AASHTO, 1993].
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Flexible Pavement Design/Analysis

Mechanistic/Empirical Pavement Analysis

« Material mechanical
properties and traffic
loadings are used to
calculate stress and
strain

Climate

« Transfer functions are
used to predict pavement

distresses
«  Predicted distresses are
compared to allowable eyl
— !.. s L :-.. - -r. .
- hE . . 1=l gt
« Reliability of trial section Response Damage Distress
is determined Accumulation
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Flexible Pavement Design/Analysis

Mechanistic/Empirical Pavement Analysis

« Modulus is one of the material properties used by
AASHTO software to predict stress/strain

Layer: Laver 1 Asphalt Concrete:Default azphalt concrete L I Output Beport
=24
B Asphak ~
Thickneszs [mm] 250
Unit weight [kg/m™3) 2300
Poizzonts rabin 0.35

Tynamic Moduhs
Diyrnamic modulus

Analysis level:3

E Azphai-Binde
Azphalk binder Conventional ¥iscosity-AC 20
E General
Reference temperature [deg C) 211
Effective binder content %) 11.6
A voids [Z] ¥
Thernal conductiity [watt/meter-kelin) 1.16
Heat capacity [joulekg-kelvin | 363
E3: Identifiers
Dizplay namesAdentifier Default asphalt concrete
Descnption of object
At
Date created 96/2010
immrcsser b
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In-Situ Methods

« Soil Boring

« Coring

« Dynamic cone penetrometer (DCP)

« Portable seismic properties analyzer (PSPA)

« Falling weight deflectometer (FWD)
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In-Situ Methods

Soil Boring / Group Index
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In-Situ Methods

Coring Rig
Cores provide pavement thickness,

samples for lab testing, and access Bt
for testing of base/subgrade Measuring Pavement Thickness
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In-Situ Methods

Dynamic Cone Penetrometer (DCP)

Determining thickness and strength/stiffness of
base/subgrade layers with DCP
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In-Situ Methods

Analysis of DCP data

Step 1 — Noise Reduction

— Disregard any blows with depth change less than 0.04 inches.

Step 2 - Conversionto CBR/Mr | pR — Penetration Rate (Depth per

292

CBR = PR112

- Mg = 1200 * CBR

Blow)
CBR — California Bearing Ratio

Step 3 — Identify Uniform Layers M. — Resilient Modulus

A(x) = fodex

fy Rdx

a

R, =

A,(x) =Ra xx

Z(x) = A(x) — Aa(x)

R - Resilient Modulus

A(x) — Cumulative Area

R, — Average Response

A, (x) — Cumulative Average Area

Z(x) — Difference of Area and
Average Area

*Wu & Sargand (2007)
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In-Situ Methods

DCP — Identify Uniform Layers
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In-Situ Methods

DCP Analysis

Step 4 Determine Structural Number (Layer Coefficient)
B. K. Roy (2007)

DCPN; = SN; X T;

where

DCPN, =i"layer DCP number

BR, = i layer blow rate

T, = it layer thickness
DCPN;

i —

38.98

where

SN; = it layer structural number
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In-Situ Methods

Portable Seismic Pavement Analyzer (PSPA)

e Seismic Analysis

Determination of surface

layer modulus by analysis of
the surface waves generated
by an impact load

Hammer receiver 1

R waves
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In-Situ Methods

Deflection Based

Falling Weight E I

Deflectometer (FWD) _
.’_ =

FWD sensor
configuration
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In-Situ Methods

Deflection Based

Lightweight Falling Weight
Deflectometer (LFWD)

‘_//Fa.llmg Mass
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Load Ce.]l
TLoad Fl ate. ‘
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In-Situ Methods

Deflection Based

Determination of modulus of all pavement layers using
backcalculation software such as MODULUS 6.0,
EVERCALC, etc.

w. About Evercale 5.0

Range of Moduli |

Seed Moduli - Controls

Layer Thicknesses

¥
Deflection

Calculations

Search for Mew
hoduli

'
Measured
Deflections

FWD Backcalculation Program

Loads

------- Occaisonal Path
Results
Lsual Path
. MODULUS 6.0 for WINDOWS
Input FWD Data Data Analysis Postprocessing Help
., F |
gl OHE | & = _ _ ha- |
Read FWD Drop Select Stat, Select Remaining Life | Backcalculation| Segrmentation | Chart Qutput | View Comment|  Exit Program

I
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In-Situ Methods

Deflection Based

Determination of Structural Number (layer coefficient)
[AASHTO Section 5.4.5]

O.24P] Where P = applied load, pounds

d, = deflection at distance r from the center of the load, inches
dr r = distance from the center of the load, inches
C = a correction factor. The recommended C = 0.33

Design M = C(

1 Where d, = deflection measured, in inches, at the
1- > center of the load plate adjusted to a standard
14 ( Dj temperature of 68°F
p = NDT load plate pressure, psi

2 E A = NDT load plate radius, inches
D |E, P
M _ |1+ —

d, = 1.5pa

D = total thickness of pavement layers above
subgrade, inches
Mg, = subgrade resilient modulus, psi

SNt = 0.0045D 3/ E,,
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In-Situ or Lab Method

Modulus Based

Determination of Structural Number (layer coefficient)
for Aggregate Base [AASHTO Section 2.3.5]

020 — ')
a, =0.249(log,, E, ., )—0.977
0.18
ap
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018 = mm gy —m =gy — - 20~ ———= S E, . 1 psi
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% ] ® 2
0124 = 0 | 5 s x J g
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= o .5
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Results Untreated Subgrade

Modulus

M ODOT Procedure (Group Index) m DCP (USACE Equation)
FWD Back Calculation B AASHTO Section 5.4.5
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Results Stabilized Subgrade

Layer Coefficient

Stabilized Subgrade Cumulative Frequency
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Results Stabilized Subgrade

Modulus

Stabilized Subgrade Cumulative Frequency
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Results Aggregate Base

Layer Coefficient

Base Cumulative Frequency
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Results Aggregate Base

Modulus
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Results Stabilized Subgrade and Aggregate Base
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Conclusions

* As borne out by FWD and DCP measurements, both cement
stabilization and lime stabilization resulted in significant long
term increases in the modulus of the stabilized subgrade
relative to the unstabilized subgrade,

« Current construction procedures will effectively chemically
stabilize approximately 85% of the design thickness for
cement, and 80% for lime.

« The modulus and stiffness of the base is increased because it
Is confined by the stabilized soil underneath and the
pavement on top.
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Conclusions

« The significant increase in the modulus of the base and
stabilized subgrade may justify decreasing the thickness of
flexible pavement layer. However, there are other factors to
be considered in the final pavement design which can also
Impact pavement performance.

« Final report available at:

http://www.dot.state.oh.us/Divisions/Planning/SPR/Research/
Pages/Publications.aspx
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