Balanced Mix Design

Ohio Paving Conference
February 1, 2017
Dave Newcomb and Fujie Zhou
Texas A&M Transportation institute

How have asphalt materials changed?

- 1901 2000 Age of Uncomplicated
 - Almost all unmodified asphalt
 - Recycling in 1970s 90s: Low amounts of RAP
 - Almost all dense-graded mixes
 - Marshall and Hveem become displace
 - Volumetric design works OK

Recycled as Roads

How have asphalt materials changed?

- 2000 2016
 - PG System in full swing
 - Refineries change asphalt gets expensive
 - Warm mix
 - PPA to make high PG
 - REOB to make low PG
 - Polymers
 - More RAP and RAS
 - Smaller NMAS
 - SMAs

RAP/RAS and PG rees

RAP/RAS binder too stiff?

The Need

- Volumetric Mix Design Does it make sense when our materials have changed so much?
- Balanced Mix Design
 - Max. set by AC for 98% density
 - Max. AC set by rutting test (must be less than 98% density)
 - Min. AC set by cracking test
 - Optimum is between max. AC and min. AC

- "Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."
- Basically, it consists of designing the mix for an intended application and service requirement.

Rutting Tests

Asphalt Pavement Analyzer

Hamburg Wheel Track Test

Types of Cracking

Thermal

Reflection

Top-Down Fatigue

NCHRP 9-57 Cracking Tests Workshop

- Goals
 - Select cracking tests for 4 cracking types
 - Identify potential field/APT test sections
- What we prepared for the workshop:
 - Interim report
 - Cracking test webinars
 - Cracking test booklet
 - 9 cracking test videos

Available at NCHRP 9-57 web page on TRB web site.

9 Cracking Test Videos

- IDT for low temperature cracking
- SCB at low temperature
- TSRST/UTSST
- DCT
- OT
- RDT
- S-VECD
- Bending beam fatigue
- SCB at intermediate temperature

Available at NCHRP 9-57 web page on TRB web site.

Cracking Test Videos

- DCT: https://www.youtube.com/watch?v=Ynsbs M8gbk
- SCB at low temperature: https://www.youtube.com/watch?v=YW5E69iKAPA
- UTSST: https://www.youtube.com/watch?v=gDdHMhAhnTU
- IDT: https://www.youtube.com/watch?v=xycvHX0XoyA
- OT: https://www.youtube.com/watch?v=5Np6lGSPfLA
- SCB at int temp: https://www.youtube.com/watch?v=vd-rdQCW2Pk
- BBF: https://www.youtube.com/watch?v=3V0SW0vQ8mY
- S-VECD: https://www.youtube.com/watch?v=9sGb2lkYb8l
- RDT: https://www.youtube.com/watch?v="1Avh5nMV-g"

Workshop Outcomes

Items	Thermal Cracking	Reflection Cracking	Bottom-up Fatigue Cracking	Top-down Fatigue Cracking			
Selected cracking tests	 DCT SCB-IL SCB at low temp. 	 OT SCB at intermediate temp. BBF 	 BBF SCB at intermediate temp. 	 SCB at intermediate temp. IDT-UF 			
Key factors for designing field experimental test sections Potential field test sections	 Climate (temperature, moisture, solar radiation); 2. Traffic; 3. Pavement structure and subgrade; 4. Asphalt mixtures; 5. Existing pavement conditions for reflection cracking. LTPP; 2. SPS10; 3. MnRoad; 4. NCAT Test Track; 5. Test sections under NCHRP 9-55, 9-58, and 9-59. 						

Disk Compact Tension (DCT)

- Low Temp. Cracking
- ASTM D7313
- Fracture Energy
- Relatively Simple
- Low Variability
- Correlated to Thermal Cracking at will, NOAD
- Cost ~ \$49,000
- State Adoption: MN and WI. Under review in CO, SD, MT

Semi-Circular Bend (SCB)

- Thermal, Reflection, Bottom-Up, Top-Down
- AASHTO TP105
- Fracture Energy
- Relatively Simple
- Medium Variability
- Correlated to Thermal Cracking at Mn/ROAD
- Cost ~ \$52,000
- State Adoption:
 - Low Temp: Under Review by UT, SD, PA, MT
 - Intermed Temp: LA, WI. Under Review by OK, NM. IL adopting mod version.

SCB Intermediate Temp Video

Overlay Tester (OT)

- Reflection, Bottom-Up Fatigue
- Tex-248-F
- No. Cycles to Failure
- Relatively Simple
- High Variability

- Cost ~ \$46,000
- State Adoption: TX and NJ. Under review in NV, FL, OH, MT

Bending Beam Fatigue (BBF)

- Bottom-Up Fatigue
- AASHTO T321
- No. Cycles to Failure or 50% Modulus Reduction
- Relatively Simple
- Very High Variability
- Correlated to Bottom-Up Cracking
- Cost could be > \$100,000
- State Adoption: CA for Long-life asphalt. Under review in NV and GA

Indirect Tension (IDT)

- Thermal Cracking
- AASHTO T322
- Creep Compliance/Tensile Strength
- Relatively Simple
- Low Variability

Cost can be > \$100,000 (hydraulic test machine)

Balanced RAP/RAS Mix Design for Project- Specific Service Conditions

Texas Example

Introduction

- Benefit of RAP/RAS
 - Economics
 - Saving aggregates
 - Saving asphalt binder
 - Reducing rutting
 - Environment
 - Reducing demands of nonrenewable resources
 - Reducing landfill space demands
- RAP/RAS must be used!

Limitations of current design methods for RAP/RAS mixes

- □ Feature of RAP/RAS mixes: <u>Unknown VMA (V_{BE})</u>
 - Don't know how RAP/RAS blends with virgin binder.

 Need a mechanical test to assure cracking resistance.

Balanced RAP/RAS mix design for <u>project</u> <u>specific condition</u>

- Current mix designs not suitable for RAP/RAS design
 - Need to assure rutting resistance
 - Need to assure cracking resistance
 - Need volumetric-air voids for QC
 - Need project-specific rutting and cracking requirements
 - Traffic
 - Climate
 - Structure

RAP/RAS field test sections and performance

- Amarillo-Overlay: (Aug 2009)
 - IH40: Heavy traffic; Cold weather; Soft binder
 - RAP: 0, 20, 35%
- Pharr district-New Const.: (April 2010)
 - FM1017: low traffic; Hot weather; stiff binder
 - RAP: 0, 20, 35%
- Laredo-Overlay: SH359, 20%RAP (Mar. 2010)
- Houston-New Const.:SH146, 15%RAP/5%RAS (Oct. 2010)
- Fort Worth-AC/CRCP: Loop 820 (July 2012)

RAP/RAS Test Sections

Test sections		Highway	Overlay/ new const.	Weather	Traffic MESAL	OT cycles	Performance
Amarillo	O%RAP	IH40 (severely cracked thick asphalt pavement)	4 inch/ overlay	Cold	30	95	3 yrs: 100% refl. cracking
	20%RAP					103	
	35%RAP					200	3 yrs: 57% refl. cracking
Pharr	0%RAP	FM1017-Very good support	1.5 inch/ new const.	Very hot	0.8	28	3yrs: overall - good conditions
	20%RAP					6	
	35%RAP					7	
Laredo	20%RAP	SH359-regular support	3 inch/ overlay	Very hot	1.5	3	3yrs: No cracking
Houston	15%RAP/ 5%RAS	SH146-Very good support	2 inch/new const.	hot	3.0	3	2.5yrs: No cracking
Dalhart	5%RAS	US87	3 inch/ Overlay	Cold	3.0	48/96	96 cycles-20% RCR; 48 cycles- 50%RCR

Balanced RAP/RAS Mix Design

- Hamburg test for rutting/moisture damage
- Overlay test for cracking
 OT requirement determined by Overlay program
- Max. density-98% for controlling potential bleeding

Balanced RAP/RAS Mix Design for Project-Specific Conditions

Simplified Overlay design system

Determination of Min. OT cycles

Demonstration of project-specific OT requirement

- AC overlay scenarios
 - AC/PCC
 - AC/AC/CTB
 - AC/AC/granular base
- Traffic level: 3 MESAL
 - SH/US: 3-5 MESAL
- Weather:
 - Amarillo
 - Austin
 - McAllen

Demonstration of project-specific OT requirement

Amarillo

Demonstration of project-specific OT

Austin requirement

2" Overlay under 3 MESALs/20 Years

Demonstration of project-specific OT requirement

McAllen

2" Overlay under 3 MESALs/20 Years

Summary and Conclusions

- RAP/RAS mixes can have same or better performance with proper design.
- Balanced RAP/RAS mix design for project-specific conditions is recommended.
- Different approaches are available for improving RAP/RAS mix performance if needed.

What do We do with This?

Tex-204-F When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits

Tex-207-F

±1.0

Note²

2. Mixture is required to meet Table 8 requirements.

Laboratory-molded density, %

QC Volumetrics

Some Day

QA Volumetrics

QA Performance **Testing**