Paving Over Crack Filling & Everything You Need to Know About Tack Coats

Ohio Asphalt Paving Conference Fawcett Center February 6, 2008

asphalt institute

Sealants Reflecting through Overlays

- Not a new phenomenon
- Widespread Awareness in the 70's
 - Polymer Modified Mixes
 - Pavement Preservation Efforts
- Not all Overlays
 - Generally Rare
 - Several Compounding Issues

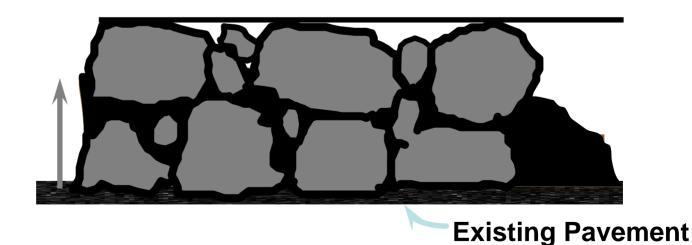
asphalt institute

Pavement Preservation Efforts

- Most Commonly Used
- Cost-Effective
- When Life Cycle Cost Is Considered (Per SHRP H106)

asphalt institute

Sealer Reacts to HMA Overlay



- Softens/Expands
 - Softening Point 175 225° F
- Wick up into HMA
 - Trapped moisture
- Causing Bumps
- Weak spots

asphalt institute

Crack Filler "wicks up" into the HMA

asphalt institute

- HMA Mix Type
- Roller Types
- Compaction Procedures

- Crack Sealant Type
- Application Procedures
- Age of Sealant

asphalt institute

- HMA Mix Type
 - High Temperature Modified mixes
 - Thick Lifts vs. Thin Lifts
 - Harsh, hard to Compact

asphalt institute

- Roller Types
 - Heavy Rollers
 - Static vs. Vibratory
 - Pneumatic Rollers vs. Steel Wheel

asphalt institute

- Compaction Procedures
 - Excessive Number of passes
 - Static vs. Vibratory

- Sealant Type
 - Higher Softening Temperature
 - Cost vs. Benefit
 - Wait more than One year
 - Less than One Year

- Age of Sealant
 - Age hardened
 - Older than One year
 - Less than One Year
 - Route or Mill to Remove.

asphalt institute

Rotary Impact Router

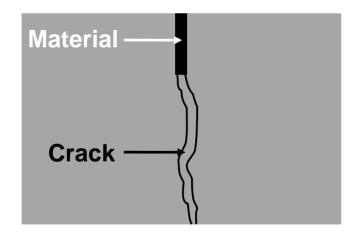
Vertical Spindle Router

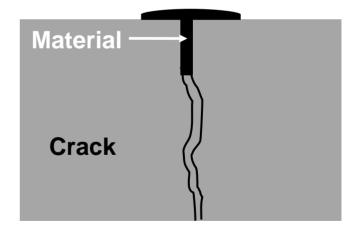
Random Crack Saw

asphalt institute

Milling to Remove Sealant

asphalt institute

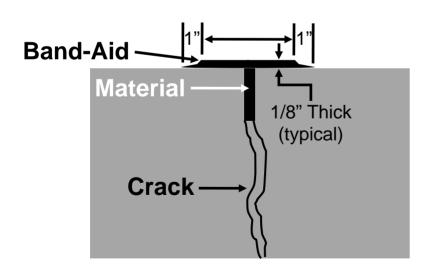

- Sealant Application Procedures
 - Amount
 - Configuration.

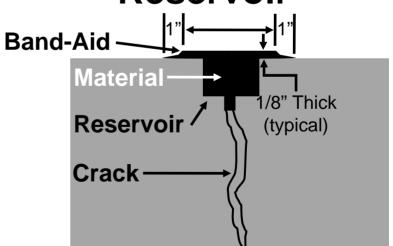

asphalt institute

Placement Configurations

Flush Fill

Capped

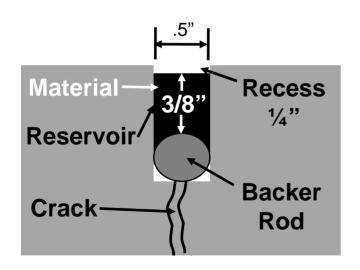


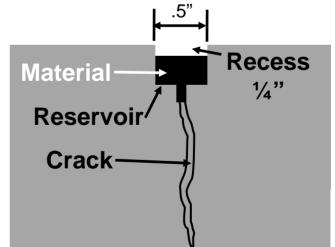

asphalt institute

Placement Configurations

Simple Band-Aid

Band-Aid with a Reservoir

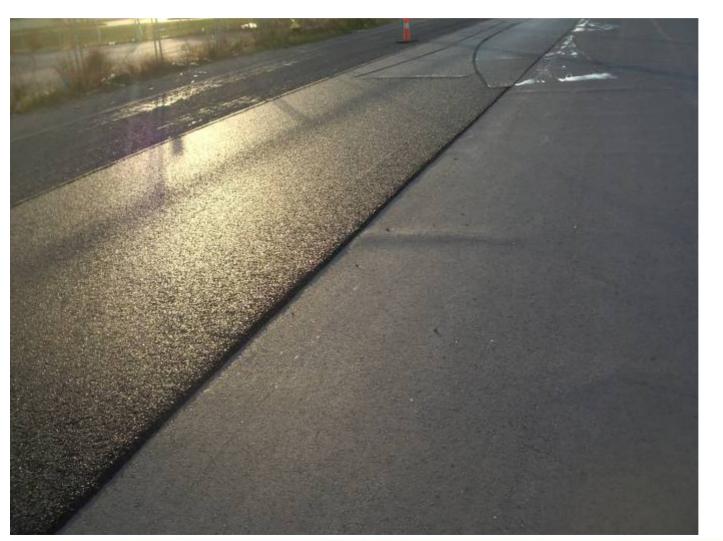



asphalt institute

Recommended Placement Configurations

Deep Reservoir-and-Recess

Standard Reservoir & Recess



Evaluating the Potential

- Sources of Additional Information
 - Pavement Management System
 - Maintenance Records
 - •Test Strips

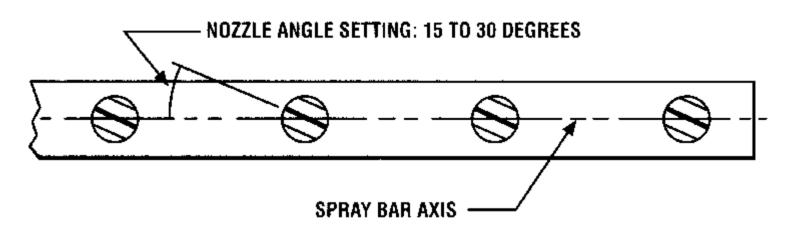
asphalt institute

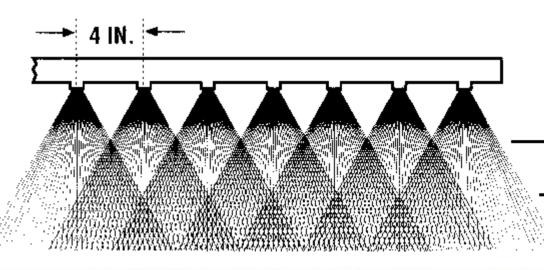
New Technology

Warm-Mix Asphalt

Key component of a quality HMA paving

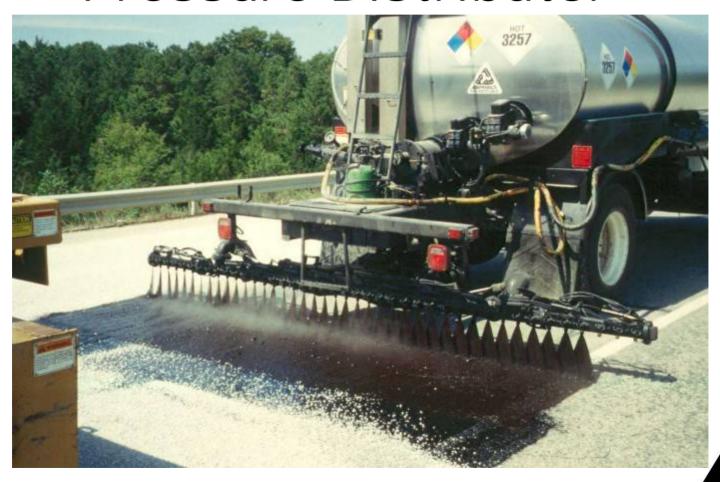
- Bonds to underlying layers
- Achieves maximum pavement strength
- It prevents delamination
- Ensures long-term performance


Equipment


- Well Maintained
- Functioning Properly
- Capable of maintaining Temperature & Pressure
 - Slow setting asphalt emulsions SS-1h
 - •Spraying temperature between 75° F and 130° F

asphalt institute

SINGLE COVERAGE


DOUBLE COVERAGE

TRIPLE COVERAGE

asphalt institute

Pressure Distributor

asphalt institute

Calibrate Distributor

- Slow setting emulsion are more stable
- Can be diluted in the field
 - Carefully, by adding water to the emulsion
 - Adding the emulsion to water may cause the tack to break.
- The dilution rate should be 1:1
- Dilution Allows Distributor
 - To Shoot at a Higher Spread
 - Higher Pressure
 - With Better Control
 - 90% Uniform Coverage of the Surface

Heavy Tack Coat

Typical Application Rates		Rate *		
Existing Pavt Condition	Residual	Undiluted	Diluted(1:1)	
	.03	.05	.10	
New Asphalt	to	to	to	
	.04	.07	.13	

Typical Application Rates	Rate *		
	(gallons/sy)		
Existing Pavt Condition	Residual	Undiluted	Diluted(1:1)
	.04	.07	.13
Oxidized Asphalt	to	to	to
	.06	.10	.20

Traffic should be kept off the tacked surface

- Good practice
 - Tack just far enough ahead
 - Sufficient time for the tack coat material to set
 - If the road surface must be open to traffic
 - •Use clean dry sand cover
 - Provides friction
 - Prevents pick-up
 - Typical rate is 4 to 8 lbs/sy.
 - If the Surface gets dirty Re-Tack
 - •When in doubt Re-Tack.

Paving Over Crack Filling & Everything You Need to Know About Tack Coats

FPO Technical Bulletins

www.flexiblepavements.org

Asphalt Institute MS-19

www.asphaltinstitute.org

Thank You!

asphalt institute

Paving Over Crack Filling &

Everything You Need to Know About Tack Coats

Wayne Jones
Regional Engineer
Asphalt Institute

wjones@asphaltinstitute.org

