

Perpetual Pavements

www.AsphaltAlliance.com

Value

Quality in a product or service is not what the supplier puts in. It is what the customer gets out and is willing to pay for. A product is not quality because it is hard to make and costs a lot of money, as manufacturers typically believe. This is incompetence. Customers pay only for what is of use to them and gives them value. Nothing else constitutes quality.

Peter Drucker

Economics

Why are Perpetual Pavements Important?

- Lower Life Cycle Cost
 - Better Use of Resources
 - Low Incremental Costs for Surface Renewal
- Lower User Delay Cost
 - Shorter Work Zone Periods
 - Off-Peak Period Construction

Perpetual Pavement versus Conventional Design

Mechanistic-Based Design

Mechanistic Performance Criteria

HMA Modulus

Normal Fatigue Testing Results Versus Endurance Limit Testing

Does the Endurance Limit Exist?

- University of Illinois Study
 - 70 με reasonable
- NCHRP Project 9-38
 - 100 με for unmodified asphalt
 - 250 με for modified asphalt
- NCHRP Project 9-44 Validating the Endurance Limit
 - Endurance Limit Workshop
- In the new MEPDG to be adopted by AASHTO

Significance of Fatigue Endurance Limit

"....such a limit would provide a thickness limit for the pavement..Increasing the thickness beyond the limiting thickness... would provide no increased structural resistance to fatigue damage and represent an unneeded expense."

Prof. Carpenter

70 Micro Strain Test

Analysis

- Program uses Monte Carlo simulation to model input distributions
 - Load, Materials, thickness
- A distribution of pavement response is determined
- Reliability = probability that response(s) below threshold, OR
- Damage/Million ESAL, OR
- -Time to Damage = 0.1

APA ASPHALT PAVEMENT ALLIANCE

% Below Threshold

Design should have high % below threshold

'Damage Computation'

- A PA ASPHALT PAVEMENT ALLIANCE
- For responses exceeding threshold, compute N using transfer function
 - User defined
- Calculate damage accumulation rate
 - Damage / MESAL

APA ASPHALT PAVEMENT ALLIANCE

Estimated Long Life

- Convert damage rate into an estimated life
 - Use traffic volume and growth
 - Calculate when damage = 0.1
 - Use for Low Vol. Roads (t ~30 yrs.)

Low Volume Traffic

3 - 5/wk

10 - 20/wk

Key Components

- Based on fully functional M-E design software
- Layered elastic analysis
- Incorporates
 - Seasonal effects
 - Thickness variability
 - Material property variability
 - Load Spectra or Traffic Count
 - Probabilistic analyses

APA ASPHAIT PAVEMENT ALLIANCE

Perpetual Pavement Performance Criteria

- Designer selects location(s) in layer
- Type of criteria (stress, strain, deflection)
- Threshold value and transfer function

Traffic

Performance Goals - Avoid These

Foundation - Illinois

- > Fatigue Resistant Asphalt Base
 - » Minimize Tensile Strain with Pavement Thickness
 - » Thicker Asphalt Pavement = Lower Strain
 - » Strain Below Fatigue Limit = Indefinite Life

- Rut Resistant Upper Layers
 - Aggregate Interlock
 - » Crushed Particles
 - » Stone-on-Stone Contact
 - Binder
 - » High Temperature PG
 - » Polymers
 - » Fibers
 - Air Voids
 - » Avg. 4% to 6% In-Place
 - Surface
 - » Renewable
 - » Tailored for Specific Use

RATE OF RUTTING vs ASPHALT THICKNESS

APA ASPHALT PAVEMENT ALLIANCE

Performance of Washington Interstate Flexible Pavements (based on 284 km)

Statistic	Time Since Original Construction (years)	Thickness of Original AC (mm (in.))	Time from Original Construction to First Resurfacing (years)
Average	31.6	230 (9.2)	12.4
Range	23 to 39	100 to 345	2 to 25

Ohio Study of Flexible Pavements

- Examined Performance on 4 Interstate Routes
 - HMA Pavements Up to 34 Years without Rehabilitation or Reconstruction
 - "No significant quantity of work . . . for structural repair or to maintain drainage of the flexible pavements."
 - Only small incremental increases in Present Cost for HMA pavements.

APA ASPHALT PAVEMENT ALLIANCE

FHWA - Data from Long-Term Pavement Performance Study

- Data from GPS-6 (FHWA-RD-00-165)
- Conclusions
 - Most AC Overlays ≥ 15 years before Rehab
 - Many AC Overlays > 20 years before Significant Distress
 - Thicker overlays mean less:
 - Fatigue Cracking
 - Transverse Cracking
 - Longitudinal Cracking

New Jersey I-287 Surface Cracking

Study of Kansas Interstates

Current Perpetual Pavement Efforts

- Europe
- California
- Colorado
- Illinois
- Kentucky

- Michigan
- Ohio
- Oregon
- Texas
- Wisconsin

Rehabilitation

Possible Distresses

- > Top-Down Fatigue
- > Thermal Cracking
- > Raveling

Solutions

- > Mill & Fill
- > Thin Overlay

High Quality SMA, OGFC or Superpave

20+ Years Later

Perpetual Pavement

- > Structure Lasts 50+ years.
 - » Bottom-Up Design and Construction
 - » Indefinite Fatigue Life
- > Renewable Pavement Surface.
 - » High Rutting Resistance
 - » Tailored for Specific Application
- Consistent, Smooth and Safe Driving Surface.
- > Environmentally Friendly
- > Avoids Costly Reconstruction.

www.AsphaltAlliance.com

References

Perpetual Pavements

A Synthesis

TRI Report 250

Int'l Conferences on Perpetual Pavements

- Int'l Soc. for Asphalt
 Pavements 2004
- Ohio 2006

Value - Paraphrased

