PennDOT Longitudinal Joint Density Efforts

February 5, 2014

Garth D. Bridenbaugh, P.E. Pennsylvania Department of Transportation

PennDOT's History at Joints

- In 2006, PennDOT specs required joints to be constructed according to a QC plan
- Many QC plans silent about joints
- No measurement of joint density
- Joint quality usually judged by smoothness across the joint
- Some performance issues

But, even visually good joints can bite!!!

Very costly solutions

How much longer would the road have lasted with a good joint?

History of PA Joint Density Effort

- Pennsylvania began an effort to improve joint density in 2006-07 with study
- Began measuring joint density in 2007 directly on the joint
- Adopted a best practices (method spec) approach for 2008 construction

History of PA Joint Density Effort

- >1% increase in density in 1st year alone
- More was hoped for 2009 once everyone was comfortable with the new process

Longitudinal Joint Data Summary					
Year	Density Lots	Avg. Joint Density	Avg. Roadway Density		
2007	18	87.8%	93.9%		
2008	43	88.9%	94.1%		

History of PA Joint Density Effort

- Slight increase in 2009 less than hoped
- By end of 2009 looking for higher density

Longitudinal Joint Data Summary					
Year	Density Lots	Avg. Joint Density	Avg. Roadway Density		
2007	18	87.8%	93.9%		
2008	43	88.9%	94.1%		
2009	29	89.2%	94.1%		

Keeping water out of our joints

- Most research suggested that
 - densities should be about 92% to minimize permeability
 - ➤ Joint densities below 89 to 90% had an exponential increase in permeability
- Bottom line, we needed better joint density that we were achieving on many of the projects

Joint Density Incentive/Disincentive

- For 2010 PennDOT began looking to an end result joint density specification
 - Financial incentive for high density
 - Financial disincentive for low density
 - Contractor innovation to provide optimal joint densities (contractor chooses construction method)

How we sample joints

Vertical Joint

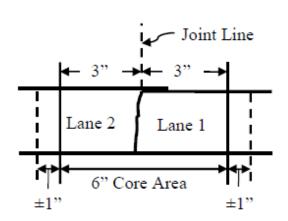
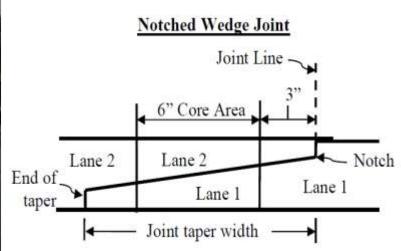



Figure not to scale


www.dot.state.pa.us

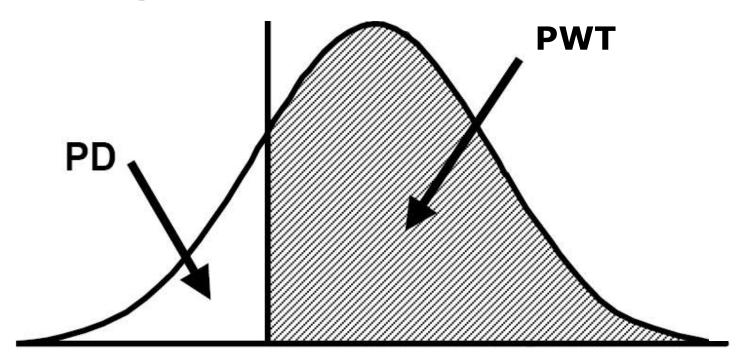
 The maximum theoretical specific gravity (Gmm) for each core is the average of Lane 1 and Lane 2

Project Selection Criteria

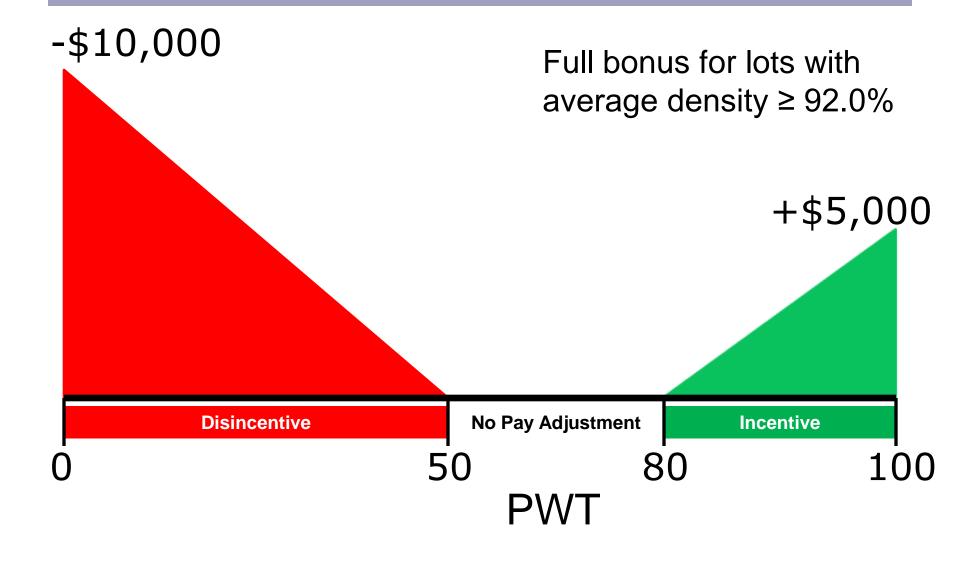
Density Specification for:

- Surface courses
- RPS pavements (PA's highest level of projects)
- National Highway System
- 12,500 feet of testable joint
- Pavement on both sides of joint must be cored

Joint Density Incentive/Disincentive


- Cores cut directly on finished joints every 2500 ft.
- 1 Lot = five joint cores (12,500 ft)
- Maximum Dollar Amounts
 - \triangleright Incentive = \$5,000/lot
 - Disincentive = \$10,000/lot

Graphic Illustration of PWT

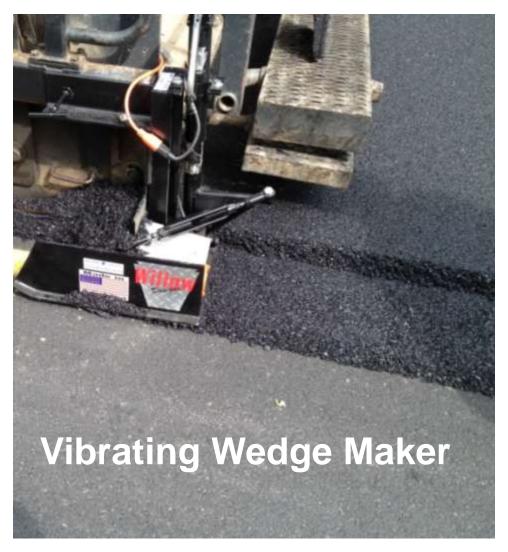

Lower Spec Limit = 90% Gmm

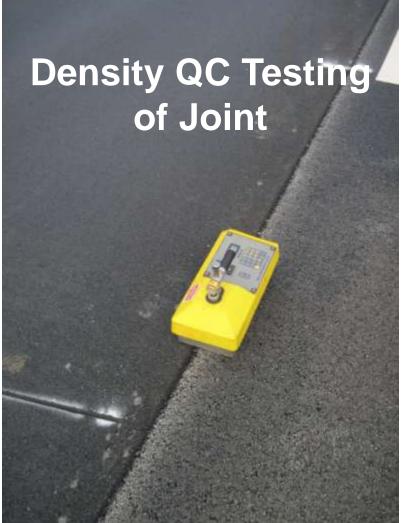
Started at 89% lower spec limit, raised to 90% current

Impact on Lot Payment Summary

Corrective Action

- Lots with avg. density
 < 88% Gmm require
 corrective action
- Contractor must seal the joint with PG 64-22 at no cost
- Very few lots require corrective action



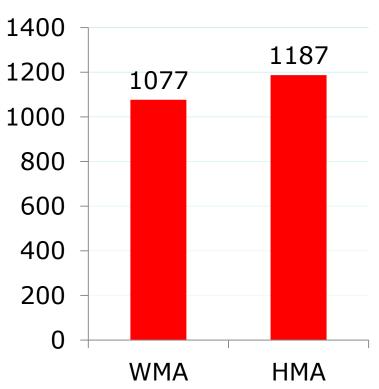


Contractor Innovation

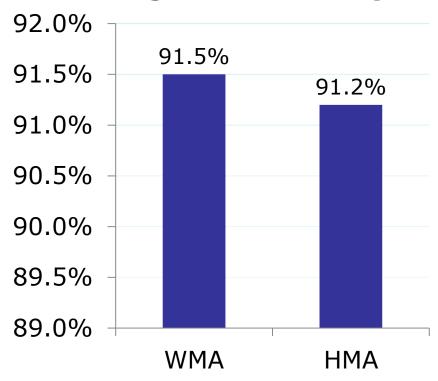
Contractor Innovation

How Far Have We Come?

Longitudinal Joint Data Summary					
Year	Density Lots	Avg. Joint Density	Avg. Roadway Density		
2007	18	87.8%	93.9%		
2008	43	88.9%	94.1%		
2009	29	89.2%	94.1%		
2010	No data, transition to PWL spec.				
2011	137	91.1%	94.1%		
2012	162	91.6%	94.0%		
2013	168	91.4%	93.9%		

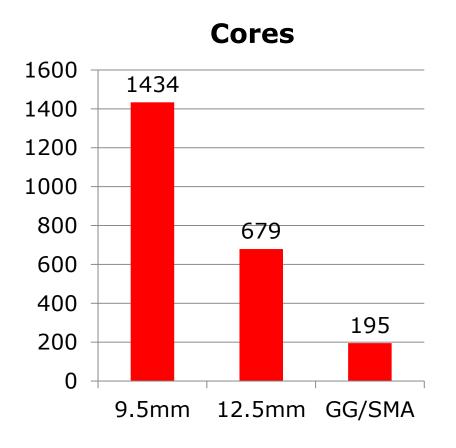


Data analysis from 2011 - 2013

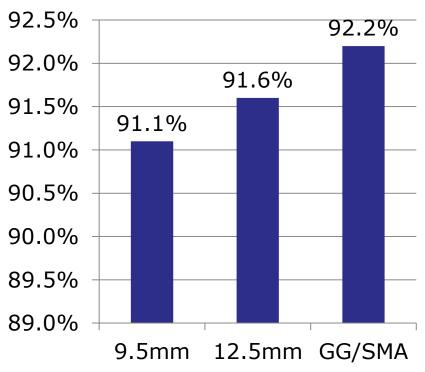


Warm Mix vs Hot Mix

2011-Present Cores



Average Joint Density



Mix Size and Type

Average Joint Density

More 2011-13 Joint Density Info.

- 1,082 linear miles of joint tested
- 2,285 joint core samples
- 161 total projects
- 3.6% increase in joint density from outset
- Approx. \$1,000 per mile

Notched Wedge Joint Core Hole

Why Joint Density?

- Lower permeability reduces chance for moisture damage
- Higher density reduces the permeability of the pavement in place.

Joint Density Spec. Impacts

- Improved density is expected to lead to better long term performance
- Anticipated lower maintenance costs

