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WAY-30 InstrumentationWAY-30 Instrumentation
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Test Section at Geyer’s ChapelTest Section at Geyer’s Chapel
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WAY-30 InstrumentationWAY-30 Instrumentation
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Test Section at McQuaid RoadTest Section at McQuaid Road
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Instrumentation PlanInstrumentation Plan

y

x

• ORITE’s instrumentation plan is to monitor 
environmental and response parameters in each 
pavement type.

• Instruments will be purchased and calibrated, then 
installed during the construction process

• Environmental parameters to be monitored in only 
one section of each pavement type. 

• Dynamic load responses will be collected in 
duplicate sections of both pavements
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InstrumentationInstrumentation

Environmental ParametersEnvironmental Parameters

Asphalt Concrete Test Sections

MEASUREMENT LAYERS MANUFACTURER SENSOR

Temperature Pavement, Base 
and Subgrade

Measurement 
Research Corp.

Campbell Scientific, 
Inc.

MRC Thermistor

Moisture Base and Subgrade TDR Probes

Automatic weather station installed to collect data related to 
air temperature, precipitation (rain and snow), wind speed 
and direction, relative humidity, and incoming solar radiation..
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InstrumentationInstrumentation

Response ParametersResponse Parameters
MEASUREMENT PARAMETERS MANUFACTURER SENSOR

Displacement Load Response and 
Seasonal Response

Macro Sensors

Pressure Load Response and 
Seasonal Response

Geokon Inc. Geokon 3500 Pressure 
Cell

Dynatest

Macro Sensors LVDTs
(Linear Variable 

Displacement Transducer)

Strain Longitudinal and 
Transverse Strain

Dynatest PAST II Strain 
Transducer

Asphalt Concrete Test Sections
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y

x

Instrumentation Instrumentation 

• Shallow LVDTs will monitor displacement above the 
subgrade

• Deep LVDTs will monitor the total displacement in the 
pavement system

• This combination of LVDTs help distinguish the movement 
between the subgrade and base. 

• Two pressure cells will measure the vertical pressure applied 
to the base as a measure of support in each section.

• Strain gauges are placed in the wheel path of varying layers 
to measure transverse and longitudinal strain during 
controlled vehicle testing. 
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Controlled Vehicle Load (CVL) TestingControlled Vehicle Load (CVL) Testing

y

x
• December 2005

• July 2006

• Single axle and tandem axle loads

• Speeds 5 mph, 25 mph (July) or 30 mph (Dec), 45 mph, 
and 55 mph (July) or 60 mph (Dec)
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CVL Load ConfigurationsCVL Load Configurations

• Tandem Axle

– Loads:  40.15 kip (December) 
and 34.55 kip (July)

– Tire Pressure =100 psi

• Single Axle

– 28.2 kip (December) and 
20.35 kip (July)

– Tire Pressure =100 psi

13.2” 13.2”

53-54”
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WAY-30 FRL Strain Response Dec. 2005WAY-30 FRL Strain Response Dec. 2005

5 mph Test: ODOT 28.2 Kip Single Axle Truck
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WAY-30 LVDT Response Dec. 2005WAY-30 LVDT Response Dec. 2005

5 mph Test: ODOT 40 Kip Tandem Axle Truck
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WAY-30 Pressure Cell Readings Dec. 2005WAY-30 Pressure Cell Readings Dec. 2005

5 mph Test: ODOT 40 Kip Tandem Axle Truck
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Longitudinal Strain – Sect. 664 (AC2-390182)
FRL Layer Dec. 2005

Longitudinal Strain – Sect. 664 (AC2-390182)
FRL Layer Dec. 2005

30 mph Test: ODOT 28.2 Kip Single Axle Truck
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Maximum Tensile Strains in Fatigue Resistant Layer  Test 
Section 664 (AC2 - 390182) Dec. 2005

Maximum Tensile Strains in Fatigue Resistant Layer  Test 
Section 664 (AC2 - 390182) Dec. 2005

Max.Tensile Strain, ue

Speed 28.5k Single Axle 40 k Tandem Axle
(mph) Maximum Average Maximum Average

5 32.6 29.0 19.5 17.1
30 27.2 23.9 19.6 17.7
45 27.4 25.1 21.5 17.4
60 27.7 24.9 19.9 18.3

Note: 1 mph = 1.6 km/h
1 kip = 4.448 kN
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Maximum Tensile Strains in Fatigue Resistant Layer  Test Section 876A 
(AC1 - 390181) Dec. 2005

Maximum Tensile Strains in Fatigue Resistant Layer  Test Section 876A 
(AC1 - 390181) Dec. 2005

Max.Tensile Strain, ue

Speed 28.5k Single Axle 40 k Tandem Axle
(mph) Maximum Average Maximum Average

5 23.1 20.5 15.3 13.9
30 18.8 16.8 14.9 13.0
45 18.6 15.5 15.4 14.3
60 18.5 16.8 15.0 12.0

Note: 1 mph = 1.6 km/h
1 kip = 4.448 kN
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Maximum Tensile Strains in Fatigue Resistant Layer  Test Section 876A 
(AC1 - 390181) Dec. 2005

Maximum Tensile Strains in Fatigue Resistant Layer  Test Section 876A 
(AC1 - 390181) Dec. 2005

Max.Tensile Strain, ue

Speed 17.5k Single Axle 28.5 k Tandem Axle
(mph) Maximum Average Maximum Average

5 14.9 12.8 12.7 11.4
30 12.9 11.4 11.1 10.2
45 11.5 10.8 10.2 9.0
60 11.8 10.2 10.3 9.7

Note: 1 mph = 1.6 km/h
1 kip = 4.448 kN
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Maximum Tensile Strain in the Intermediate Layer Dec. 2005Maximum Tensile Strain in the Intermediate Layer Dec. 2005

8 km/h (5 mph)

 Maximum Tensile Strain, ue 
28.5k  Single Axle 40k Tandem Axle Test 

Section Max Average Max Average 
664 19.9 17.8 12.1 10.9 

876A 12.9 11.8 8.2 7.7 
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Maximum Transverse Strains in the Intermediate 
Layer Dec. 2005

Maximum Transverse Strains in the Intermediate 
Layer Dec. 2005

8 km/h (5 mph)

 Maximum Transverse Strain, ue 
28.5k Single Axle 40k Tandem Axle Test 

Section Max Average Max Average 
664 14.2 12.4 11.4 10.9 

876A 8.8 8.3 7.7 7.3 
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Maximum Tensile Strain Variation vs. Speed and 
Axle Type Dec. 2005

Maximum Tensile Strain Variation vs. Speed and 
Axle Type Dec. 2005

Section 876A (AC1 - 390181)
Max Tensile Strain Occurrence per Speed per Truck

Test Section 876A
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Longitudinal Strain: 
Section 876A (AC1-390181) – FRL Layer Dec. 2005

Longitudinal Strain: 
Section 876A (AC1-390181) – FRL Layer Dec. 2005

30 mph Test: ODOT 40 Kip Tandem Axle Truck
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Pressure Readings: Section 664 (AC2-390182) Dec. 2005Pressure Readings: Section 664 (AC2-390182) Dec. 2005

 

-1

0

1

2

3

4

5

6

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (sec)

Pr
es

su
re

 (P
SI

)

PC-001 PC-002

(28 kip Single Axle Load, 45 mph)



Ohio University - Department of Civil Engineering 25

LVDT Deflections: Section 664 (AC2-390182) Dec. 2005LVDT Deflections: Section 664 (AC2-390182) Dec. 2005
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AC CVL Test, July 2006AC CVL Test, July 2006

Longitudinal Strain in Intermediate Layer -- 
Single Axle 20.5 kip 25 mph- AC 876A - Run 3 07/18/2006 
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AC CVL Test, July 2006AC CVL Test, July 2006

Transverse Strain in Intermediate Layer --
Single Axle 20.5 kip 25 mph- AC 876A - Run 3 07/18/2006 
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AC CVL Test, July 2006AC CVL Test, July 2006

Longitudinal Strain in Fatigue Resistance Layer -- Single Axle 20.5 kip 25 mph- 
AC 876A - Run 3 07/18/2006
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AC CVL Test, July 2006AC CVL Test, July 2006

LVDT Deflections Single Axle 20.5 kip 25 mph
AC 876A Run 3 July 18, 2006

-2

0

2

4

6

8

10

12

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Time (sec)

D
ef

le
ct

io
n 

(m
ils

)

LVDT-001
LVDT-002
LVDT-003
LVDT-004



Ohio University - Department of Civil Engineering 30

AC CVL Test, July 2006AC CVL Test, July 2006

LVDT Deflections Single Axle 20.5 kip 25 mph
AC 876B Run 3 July 18, 2006
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AC CVL Test, July 2006AC CVL Test, July 2006

Longitudinal Strain in Fatigue Resistance Layer -- 
Single Axle 20.5 kip 25 mph- AC 876B - Run 3 07/18/2006
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AC CVL Test, July 2006AC CVL Test, July 2006

Longitudinal Strain in Intermediate Layer --
Single Axle 20.5 kip 25 mph- AC 876B - Run 3 07/18/2006
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AC CVL Test, July 2006AC CVL Test, July 2006

Transverse Strain in Intermediate Layer --
Single Axle 20.5 kip 25 mph- AC 876B - Run 3 07/18/2006
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AC CVL Test, July 2006AC CVL Test, July 2006

Longitudinal Strain in Surface Layer --
Single Axle 20.5 kip 25 mph- AC 876B - Run 3 07/18/2006 
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VMC Variation – Section 876 (AC1 – 390181)VMC Variation – Section 876 (AC1 – 390181)

 
Section AC1 - 390181

35

40

45

50

55

4/8/2005 5/28/2005 7/17/2005 9/5/2005 10/25/2005 12/14/2005 2/2/2006 3/24/2006 5/13/2006 7/2/2006

Date (Julian Calendar)

VM
C

 (%
)

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10

10 TDR Sensors



Ohio University - Department of Civil Engineering 36

Air Temperatures during CVL Test December 2005Air Temperatures during CVL Test December 2005

Average Hourly Air Temperature, December 6-7, 2005
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Air Temperatures during CVL Test 
July 2006

Air Temperatures during CVL Test 
July 2006

Average Hourly Air Temperature July 18-19, 2006

0

5

10

15

20

25

30

35

0:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

0:00

Time (hr)

A
ir 

Te
m

pe
ra

tu
re

 (°
C

)

7/18/2006
7/19/2006



Ohio University - Department of Civil Engineering 38

Pavement temperatures during CVL Test
July 18, 2006

Pavement temperatures during CVL Test
July 18, 2006

Pavement Temperature July 18, 2006
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Pavement temperatures during CVL Test
July 19, 2006

Pavement temperatures during CVL Test
July 19, 2006

Pavement Temperature July 19, 2006
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ConclusionsConclusions

Fatigue Resistance Layer

• During December 2005 CVL test, longitudinal 
strain on FRL remained ≤35µε, even at slowest 
speed

• During July tests at highway speeds of 45 mph and 
55 mph, the strain in the FRL remained close to 
the design value under even the heaviest loads

– In everyday use, such high-load strains will be 
rare

– High-load strains at slower speeds will be even 
more rare (during traffic stoppage or 
slowdowns), though these did exceed design 
strain
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ConclusionsConclusions

Intermediate Layer and Subgrade

• Strains at bottom of intermediate layer are lower 
than at bottom of FRL, as expected.

• Maximum longitudinal strains are slightly higher 
than maximum transverse strains  for all December 
runs and all single axle runs in July.  

• Maximum subgrade observed pressure during CVL 
tests was 6.5 psi at 45 mph under 40 kip tandem 
axle load.  



http://webce.ent.ohiou.edu

www.ohio.edu/engineering
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Pavement Analysis Program
Principal Characteristics

Pavement Analysis Program
Principal Characteristics

• Materials are considered 
– homogeneous 
– isotropic 
– follow a linear stress-strain relationship 
– modulus of elasticity is same for compression and tension.

• All layers are 
– horizontal 
– have different specific elastic modulus and Poisson’s Ratio 
– weightless 
– extend to infinity in the horizontal direction. 
– bottom layer also extends to infinity in the horizontal direction, but it is 

semi-infinite in the vertical direction.
• Stresses and displacements are zero at infinite depth within the semi-

infinite bottom layer.
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Pavement Analysis Program
Principal Characteristics (ctd)
Pavement Analysis Program

Principal Characteristics (ctd)

• The top layer is free from shear stresses at the surface 

• The load is applied at the surface of the top layer

– distributed in a circular pattern 

– constant throughout the area 

– No normal stresses exist outside of the circular area.

• The layers are in continuous contact 

• The layer interfaces are rough 

• The layers act similarly to a composite medium. 

• Both the horizontal and vertical displacements and the normal 
and shear stresses are the same very close to the interface of 
either one of the two layers.
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Pavement Analysis Program
Inputs

Pavement Analysis Program
Inputs

• vertical displacement 

• Stresses and strains: 

– vertical 

– horizontal 

– shear 

– Both stresses and strains are parallel to the three 
orthogonal axes.
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Analysis based on field core testingAnalysis based on field core testing

REAR DUAL WHEEL AC664 Dec'05 Averages and Calculated
RUN speed S2-S6 Calcul S7,9,11 Calcul S8,10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
2 5 26.44 21.48 16.70 9.97 10.80 8.15 0.0053 0.0128 0.0017 0.00049 4.336 0.594
6 30 25.12 22.35 15.97 10.36 10.43 8.52 0.0048 0.0134 0.0014 0.00047 4.784 0.619
12 45 25.30 22.18 15.23 10.30 10.30 8.57 0.0035 0.0132 0.0012 0.00050 4.694 0.606
22 60 25.04 22.16 15.37 10.33 10.50 8.55 0.0041 0.0133 0.0014 0.00049 5.454 0.611

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302

REAR DUAL WHEELS AC664 July'06 Average and Calculated
RUN Speed S1-S6 Calcul S7,9,11 Calcul S10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
47 5 118.73 68.96 72.93 29.16 64.20 20.59 0.0116 0.01784 0.0052 0.00097 4.419 1.219
55 25 86.80 68.72 51.57 29.18 40.30 22.27 0.0128 0.02005 0.0062 0.00278 4.715 1.297
61 45 77.27 69.48 43.33 29.20 40.50 20.95 0.0084 0.01852 0.0041 0.00133 4.025 1.267
69 55 70.63 70.27 37.90 29.17 35.95 20.88 0.0074 0.01866 0.0035 0.00137 4.305 1.282

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302
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Analysis based on laboratory sample testingAnalysis based on laboratory sample testing

REAR DUAL WHEEL AC664 Dec'05 Averages and Calculated
RUN speed S2-S6 Calcul S7,9,11 Calcul S8,10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
2 5 26.44 13.30 16.70 5.92 10.80 4.97 0.0053 0.0100 0.0017 0.00030 4.336 0.418
6 30 25.12 13.94 15.97 6.17 10.43 5.23 0.0048 0.0107 0.0014 0.00029 4.784 0.449

12 45 25.30 13.75 15.23 6.10 10.30 5.21 0.0035 0.0104 0.0012 0.00030 4.694 0.435
22 60 25.04 13.84 15.37 6.13 10.50 5.22 0.0041 0.0106 0.0014 0.00030 5.454 0.441

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302

REAR DUAL WHEELS AC664 July'06 Average and Calculated
RUN Speed S1-S6 Calcul S7,9,11 Calcul S10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
47 5 118.73 38.26 72.93 15.20 64.20 11.33 0.0116 0.01484 0.0052 0.00055 4.419 0.844
55 25 86.80 39.31 51.57 15.67 40.30 12.51 0.0128 0.01539 0.0062 0.00143 4.715 0.901
61 45 77.27 39.02 43.33 15.42 40.50 11.68 0.0084 0.01503 0.0041 0.00073 4.025 0.881
69 55 70.63 39.43 37.90 15.39 35.95 11.64 0.0074 0.01514 0.0035 0.00075 4.305 0.891

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302
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Analysis based on laboratory sample testing
sigmoidal equation

Analysis based on laboratory sample testing
sigmoidal equation

REAR DUAL WHEEL AC664 Dec'05 Averages and Calculated
RUN speed S2-S6 Calcul S7,9,11 Calcul S8,10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
2 5 26.44 19.12 16.70 8.17 10.80 6.76 0.0053 0.0123 0.0017 0.00040 4.336 0.558
6 30 25.12 18.86 15.97 8.17 10.43 6.81 0.0048 0.0125 0.0014 0.00041 4.784 0.560
12 45 25.30 18.42 15.23 8.04 10.30 6.78 0.0035 0.0121 0.0012 0.00042 4.694 0.540
22 60 25.04 18.35 15.37 8.02 10.50 6.74 0.0041 0.0122 0.0014 0.00041 5.454 0.542

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302

REAR DUAL WHEELS AC664 July'06 Average and Calculated
RUN Speed S1-S6 Calcul S7,9,11 Calcul S10,12 Calcul LV1&4 Calcul LV2&3 Calcul P1&P2 Calcul

mph ue ue ue ue ue ue in in in in psi psi
47 5 118.73 47.51 72.93 20.15 64.20 14.81 0.0116 0.01574 0.0052 0.00067 4.419 0.948
55 25 86.80 37.65 51.57 15.72 40.30 12.61 0.0128 0.01472 0.0062 0.00118 4.715 0.859
61 45 77.27 34.12 43.33 14.04 40.50 10.81 0.0084 0.01408 0.0041 0.00060 4.025 0.794
69 55 70.63 33.45 37.90 13.60 35.95 10.49 0.0074 0.01401 0.0035 0.00060 4.305 0.787

@ 16.25 @ 12.25 @ 12.25
Longit Longit Transv Surface Dsurf - D22.25

Bottom FRL Bottom 302 Bottom 302
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Mechanical Model - The Generalized Maxwell modelMechanical Model - The Generalized Maxwell model
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Material PropertiesMaterial Properties

Layer Instantaneous Elastic Modulus 
Used in ABAQUS (ksi)

Measured Relaxation 
Modulus (ksi)

SMA 706 726.6
ODOT442 529 501.8
ODOT302 1118 1169.0
FRL 1176 1518.5
Base 20$ 10 – 40*$

Subgrade 8$ 7.5$

$ these are resilient modulus;

*This is the normal range for aggregates;

All HMA moduli are referred at a temperature of 21.1 C.
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Elastic FE Model vs. Viscoelastic FE Model Elastic FE Model vs. Viscoelastic FE Model 

• To compare their relative performance in predicting pavement 
response at different truck speeds of 5 mph, 25 mph, and 45 
mph.

• Pavement response was collected at the U.S. 30 test section.

• In the elastic FE model, the effect of pavement temperature is 
included.

• Both models are calibrated to pavement response at a truck 
speed of 55 mph.

• It is noted that pavement temperature slightly decreased 
when truck speed decreased from 45 mph to 5 mph.
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Elastic FE Model vs. Viscoelastic FE Model Elastic FE Model vs. Viscoelastic FE Model 

40

70

100

130

0 10 20 30 40 50

Traffic Speed, mph

M
ax

im
um

 T
en

si
le

 S
tra

in
, µ

e

Measured
Elastic
Viscoelastic



Ohio University - Department of Civil Engineering 53

Elastic FE Model vs. Viscoelastic FE Model Elastic FE Model vs. Viscoelastic FE Model 
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Elastic FE Model vs. Viscoelastic FE Model Elastic FE Model vs. Viscoelastic FE Model 
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Comparison of Longitudinal Tensile StrainComparison of Longitudinal Tensile Strain
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ConclusionsConclusions

Elastic Layer Analysis

• General agreement between computed and measured values 
of longitudinal strain at bottom of FRL only when using 
resilient modulus from field cores, and only at higher speeds.  

• Calculated longitudinal and transverse strains at bottom of 
intermediate layer are are always lower than measured 
values.

• Calculated surface deflections are always higher than 
measured values.  

• Both the calculated net pavement deflection and the 
subgrade pressure are lower than the measured values.
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ConclusionsConclusions

Elastic Layer Analysis

• Using dynamic modulus of laboratory-prepared specimens with 
sigmoidal equation does not yield reasonably close verification of any 
parameters.

• Using resilient modulus of laboratory-prepared specimens does not 
yield reasonably close verification of any parameters.

• Using resilient modulus of field cores generally yields correct trends, 
though not values matching measurements.  

• ELS theory is capable of matching one parameter but not all.

• ELS not appropriate for simulating time-dependent loading due to 
trucks.

• Some discrepancies may arise from differences in air void content 
and density between field cores and laboratory prepared samples.
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