Practical Conclusions from ODOT Research Projects

2008 Ohio Asphalt Paving Conference

ODOT Pavement Research

- 20 active research projects
 - Pavement Design
 - Pavement Rehabilitation
 - Pavement Management
 - Preventive Maintenance

Truck/Pavement/Economic Modeling & In-Situ Field Data Analysis Application

FHWA/OH-2006/3A

Drs. Sargand, Wu, & Figueroa

Ohio University

LOG-33-17.82

Figure 1 – Layer Configurations of Test Sections

			crete Studies		
	Thickne		Base		
Section	AC	Base	* Type	Drain	
390101	7	8	DGAB	NO	
390102	4	12	DGAB	NO	
390103	4	8	ATB	NO	
390104	7	12	ATB	NO	
390105	4	8	4"ATB/4"DGAB	NO	
390106	7	12	8"ATB/4"DGAB	NO	
390107	4	8	4"PATB/4"DGAB	YES	
390108	7	12	4"PATB/8"DGAB	YES	
390109	7	16	4"PATB/12"DGAB	YES	
390110	7	8	4"ATB/4"PATB	YES	
390111	4	12	8"ATB/4"PATB	YES	
390112	4	16	12"ATB/4"PATB	YES	
390159	4	25	15"ATB/4"PCTB/6"DGAB	YES	
390160	4	15	11"ATB/4"DGAB	YES	
7-19-50			SPS-8		
390803	4	8	DGAB	NO	
390804	7	12	DGAB	NO	
			SPS-9		
390901	4	22	AC-20 12"ATB/4"PATB/6"DGAB	YES	
390903	4	22	PG-64-28 12"ATB/4"PATB/6"DGAB YES		
390902	4	22	PG 58-28 12"ATB/4"PATB/6"DGAB	YES	

Section	Density (pcf)	Modulus (ksi)	
390101	116.8	11.69	
390102	124.6	20.37	
390103	119.8	15.69	
390104	119.7	16.85	
390105	117.6	15.54	
390106	123.4	17.88	
390107	121.3	16.76	
390108	117.4	18.95	
390109	119.7	11.51	
390110	118.0	12.95	
390111	121.3	18.08	
390112	121.9	13.82	
390159	118.9	5.77	
390160	123.1	18.63	
Average	120.3	15.32	
Std. Dev.	2.4	3.87	
CV	2%	25%	

390108 4"PATB/8"DGAB

		Median Moisture Content (%)		
Depth below subgrade surface		9"	36"	72"
section	base type			
101	DGAB	18.7	19.3	20.9
104	ATB	19.3	19.2	20.1
108	PATB/DGAB	19.2	15.6	19.1
110	ATB/PATB	19.8	19.1	20.2
112	ATB/PATB	18.5	17.7	17.8

- Subgrade moisture is not necessary from the surface
- Subgrade density meets specification does not assure uniform subgrade strength
- Base types do not affect subgrade moisture content

- Purpose of base
 - Construction platform
 - Add protection against frost action
 - Increase load-supporting capacity of the pavement by providing added stiffness
 - Distribute load
 - Provide drainage

	Permeability (ft/day)					
	304	IA	NJ	CE	Cement	Asphalt
Fine	206	873	2234	2654	25345	25061
Median	1417	2277	3824	3703		
Coarse	5443	8210	7850	8720		

LOG-33 Free Draining Bases

Free Draining Bases, LOG-33

- CTFDB had much higher M_R than other bases
- NJ, IA, 304 about equal
- ATFDB had the lowest M_R
- Roughness all sections generally similar
- Pavement condition all sections generally similar
 - Decline in rating for ATFDB in 2001
- ATFDB cores showed evidence of some stripping of asphalt from aggregate
- March, 2001 moratorium on free draining bases.

Free Draining Bases, ERI/LOR-2

- GB > 200mm (8") increase subgrade stiffness and uniformity
- Thicker GB increase both stiffness and uniformity
- ATB of 200mm (8") thick is much more uniform than 100 mm (4")

Summary

- Base type has little impact on subgrade moisture and initial pavement performance
- Choice of base type depends chiefly on three requirements
 - appropriate stiffness
 - sufficient permeability
 - good constructability

Recommendations

- For uniformly weak or highly variable subgrades, bases with high stiffness or very thick granular base is recommended. Soil stabilization may be used to improve subgrade stiffness.
- For strong, uniform subgrades, granular base and ATB are suitable choices

- Technical Notes Published
 - Evaluation of Base Materials under Flexible Pavement (ORITE-8)
 - LOG 33
 - Pavement Design Feature Effects on Subgrade Volumetric Moisture Content (ORITE-9)
 - DEL 23

Effectiveness of Breaking and Seating of Reinforced PCC Pavement before Overlay FHWA/OH-95/023

Long Term Monitoring of Broken and Seated Pavement

FHWA/OH-2002/024

Drs. Minkarah and Arudi

University of Cincinnati

Investigation of Pavement Cracking on SR4 and Demonstration of the Multihead Breaker in Fracturing Reinforced Concrete Pavement before Asphalt Overlay FHWA/OH-2006/12

Dr. Arudi

Inframe

FHWA Special Project 202

- Major rehabilitation technique for jointed reinforced concrete pavement
 - break pavement into small slabs (18")
 - retards reflective cracking
- 1992 moratorium on break & seat
 - non uniform break pattern
 - partial debonding of steel

- Special Project 202
 - MUS-70
 - control, 6" pattern, 18" pattern, 30" pattern
 - guillotine pavement breaker
 - 7" asphalt overlay on all sections
 - constructed in 1991

- University of Cincinnati & Inframe studies
 - FAY/MAD-71
 - control, 18" break pattern
 - guillotine pavement breaker
 - 8 ½" asphalt overlay on all sections
 - constructed in 1992
 - GRE/MOT-4
 - control, 18" break pattern
 - pile hammer pavement breaker
 - 6 ½ " asphalt overly on all section
 - constructed in 1993

Special Project 202, Transverse Cracking

Special Project 202, High Severity Cracking

Reflective Cracking: I-71 & SR 4

- MHB and Pile Hammer do not produce a uniform breaking pattern throughout the depth of concrete slab
- Considerable variability exists in the extent of breaking
- Steel debonding is not consistent
- After 11 years being in service, most of the joints on SR-4 B/S sections reflected; however, their severity is NOT as extensive as that of control sections

Rehabilitation Performance Trends

- Not recommended as a major rehabilitation for JRCP in Ohio
- Not recommended for high type routes
- Viable for minor rehabilitation
- Guillotine hammer is not recommended for breaking the pavement
- A minimum overlay thickness of 6" is recommended

Perpetual Pavement

This map is taken from Ohio DOT website

Surface: High Performance

Base: Economical & Durable →

Fatigue Resistant Layer

Maximum Tensile Strain for Fatigue Crack

Tensile Strain < 70 me

Design Input: Material's Properties

SMA	E = 500,000 psi	PR = 0.35
19 mm SUPERPAVE	E = 500,000 psi	PR = 0.35
Intermediate (302)	E = 500,000 psi	PR = 0.35
Fatigue Resistant Layer (302)	E = 500,000 psi	PR = 0.35
Aggregate Base (304)	E = 20,000 psi	PR = 0.40
Subgrade	CBR = 4, 5, and 6	PR = 0.45

Thickness (inches)	Material	Design Air Voids (%)	PG Binder	Target Density (%)
1.50	(443) Stone Matrix Asphalt Concr, 12.5mm	3.5	76-22M	93-97
1.75	(442) Asphalt Concrete Inter. Course, 19mm Type A	4.0	76-22M	93-97
9	(302) Asphalt Concrete Base	4.5	64-22	93-96
4	(302) Special Fatigue Resistant Base Layer	3.0	64-22	94-97
6	(304) Aggregate Base			

AC Section A

Plan View

PROFILE VIEW (NTS)

5 mph Test: ODOT 28.2 Kip Single Axle Truck, December, 2005

Research Reports

http://www.dot.state.oh.us/research/default.asp

roger.green@dot.state.oh.us